Increase of Bioactive Flavonoid Aglycone Extractable from Korean Citrus Peel by Carbohydrate-Hydrol-ysing Enzymes

당 분해효소를 이용한 감귤 Flavonoid 무배당체 함량의 증가

  • Ahn Soon-Cheol (Department of Microbiology and lmmunology, College of Medicine, Pusan National University, Medical Rerearch Institute, Pusan National University Hospital) ;
  • Kim Min-Soo (Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee Sun-Hi (Department of Microbiology and lmmunology, College of Medicine, Pusan National University) ;
  • Kang Ju-Hyung (Department of Microbiology and lmmunology, College of Medicine, Pusan National University) ;
  • Kim Bo-Hye (Department of Microbiology and lmmunology, College of Medicine, Pusan National University) ;
  • Oh Won-Keun (Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim Bo-Yeon (Korea Research Institute of Bioscience and Biotechnology) ;
  • Ahn Jong-Seog (Korea Research Institute of Bioscience and Biotechnology)
  • 안순철 (부산대학교 의과대학 미생물 및 면역학 교실, 부산대학교병원 의학연구소) ;
  • 김민수 (한국생명공학연구원 세포신호조절 연구실) ;
  • 이선희 (부산대학교 의과대학 미생물 및 면역학 교실) ;
  • 강주형 (부산대학교 의과대학 미생물 및 면역학 교실) ;
  • 김보혜 (부산대학교 의과대학 미생물 및 면역학 교실) ;
  • 오원근 (한국생명공학연구원 세포신호조절 연구실) ;
  • 김보연 (한국생명공학연구원 세포신호조절 연구실) ;
  • 안종석 (한국생명공학연구원 세포신호조절 연구실)
  • Published : 2005.12.01

Abstract

Flavonoid compounds show several biological activities and generally exist in the forms of glycones linking sugar moiety to main structure. Flavonoid glycones such as naringin and hesperidin in korean citrus peel are slower absorbed and consequently less active than their aglycone, naringenin and hesperetin, respectively. Therefare to increase the content of flavonoid aglycone in korean citrus peel, we used commercial carbohydrate-hydrolysing enzymes, AMG 300 L, Pectinex 100 L, and Viscozyme for transforming flavonoid glycones to aglycones. Optimal conditions of enzyme reaction were pH 5.0-7.0, $5\%$ enzyme, and 24-48 hrs. The content of naringenin and hesperetin as flavonoid aglycones in untreated citrus peel is $100\~200\;ng/g$ of dried citrus peel. In case of enzyme-treated citrus peel the content of naringenin and hesperetin increased to $1,539\∼6,674\;ng/g\;and\;1,974\∼8,906\;ng/g$ of dried citrus peel, respectively. Finally the content of flavonoid aglycones could be extracted to 10-80 times. Now enzyme-treated citrus peel may be applied to use for functional food because of its higher flavonoid aglycones as more active compounds.

다양한 생리활성을 갖는 flavonoid 화합물이 감귤에 비활성 형태의 배당체 화합물로 다량으로 존재하고 있으므로 비활성 형태의 flavonoid 물질을 활성 형태의 flavonoid 무배당체 물질로 변환 시켜 활성 형태의 flavonoid 화합물을 증가하고자 하였다. 무배당체 화합물로 전환하기 위하여 시판되고 있는 당 분해효소 중 amylase가 주성분인 AMG 300L, pectinase가 주성분인 Pectinex 100L 및 cellulase, $\beta$-glucosidase, xylanase가 주성분인 Viscozyme 등을 단독 또는 혼합 처리하여 생리활성이 우수한 무배당체 화합물의 함 량을 증가할 수 있었다. 감귤에 함유되어 있는 flavonoid 화합물의 함량은 naringenin이 $100\∼200\;ng/g$(감귤건조중량), hesperetin이 1$100\∼220\;ng/g$(감귤건조중량) 정도이었으나 당분해효소를 처리한 감귤에 함유되어 있는 활성형 flavonoid 화합물인 naringenin이 $1539\∼6674\;ng/g$(감귤건조중량), hesperetin이 $1974\∼8906\;ng/g$(감귤건조중량)으로서 본 실험 결과를 통해 감귤 추출물의 flavonoid 화합물의 함량을 약 $10\∼80$배 정도로 증가시킬 수 있었다. 당 분해 효소에 의한 무배당체로의 최적 전환조건으로는 당 분해 효소의 $5\%$ 첨가, pH $5\∼7$이었으며 효소 반응 시간으로는 $24\∼48$시간이 가장 우수하였다. 따라서 본 연구에 의해 제조된 감귤 조성물에는 생리활성이 우수한 활성형의 무배당체 flavonoid인 naringenin과 hesperetin을 다량으로 함유하고 있어 기능성 식품, 건강 보조식품, 가공 식품의 식품 원료나 사료 첨가제 의 용도로 유용하게 사용할 수 있다.

Keywords

References

  1. Chi, H. and G. E. Ji. 2005. Transformation of Ginsenosides Rb I and Re from Panax ginseng by Food Microorganisms. Biotechnol. Lett. 27: 765-771 https://doi.org/10.1007/s10529-005-5632-y
  2. Day, A. J., M. S. DuPont, S. Ridley, M. Rhodes, M. J. Rhodes, M. R. Morgan, and G. Williamson. 1998. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity. FEBS Lett. 436: 71-75 https://doi.org/10.1016/S0014-5793(98)01101-6
  3. Francisco, R. T., P. A. Isabel, and L. M. Augustin. 2001. Enzymatic extraction and transformation of glucovanillin to vanillin from vanilla green pods. J. Agric. Food Chem. 49: 5207-5209 https://doi.org/10.1021/jf010723h
  4. Frydoonfa, H. R., D. R. McGrath, and A. D. Spigelman. 2003. The variable effect on proliferation of a colon cancer cell line by the citrus fruit flavonoid Naringenin. Colorectal Dis. 5: 149-152 https://doi.org/10.1046/j.1463-1318.2003.00444.x
  5. Izumi, T., M. K. Piskula, S. Osawa, A. Obata, K. Tobe, M. Saito, S. Kataoka, Y. Kubota, and M. Kikuchi. 2000. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr. 130: 1695-1699
  6. Kao Corp. 1992. Production of isoflavonoid. Japan Patent Application No. 1992190720
  7. Kawaii, S., Y. Tomono, E. Katase, K. Ogawa, and M. Yano. 1999. Quantitatiort of flavonoid constituents in citrus fruits. J. Agric. Food Chem. 47: 3565-3571 https://doi.org/10.1021/jf990153+
  8. Lee, D. S., Y. S. Kim, C. N. Ko, K. H. Cho, H. S. Bae, K. S. Lee, J. J. Kim, E. K. Park, and D. H. Kim. 2002. Fecal metabolic activities of herbal components to bioactive compounds. Arch. Pharm. Res. 25: 165-169 https://doi.org/10.1007/BF02976558
  9. Nemeth, K., G. W. Plumb, J. G. Berrin, N. Juge, R. Jacob, H. Y. Nairn, G. Williamson, D. M. Swallow, and P. A. Kroon. 2003. Deglycosylation by small intestinal epithelial cell betaglucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. Eur. J. Nutr. 42: 29-42 https://doi.org/10.1007/s00394-003-0397-3
  10. Oliveira, E. J. and Watson D. G. 2000. Liquid chromatography-mass spectrometry in the study of the metabolism of drugs and other xenobiotics. Biomed. Chromatogr. 14: 351-372 https://doi.org/10.1002/1099-0801(200010)14:6<351::AID-BMC28>3.0.CO;2-2
  11. Puri, M. and U. C. Banerjee. Production, purification, and characterization of the debittering enzyme naringinase. Biotechnol Adv. 18: 207-217 https://doi.org/10.1016/S0734-9750(00)00034-3
  12. Santamaria, R. I., M. D. Reyes-Duarte, E. Barzana, D. Fernando, F. M. Gama, M. Mota, and A. Lopez-Munguia. 2000. Selective enzyme-mediated extraction of capsaicinoids and caratenoids from chili guajillo puya (Capsicum annum L.) using ethanol as solvent. J. Agric. Food Chem. 48: 3063-3067 https://doi.org/10.1021/jf991242p
  13. Shen, J. L. and B. A. Bryan. 2003. Two-step conversion of vegetable protein isoflavone conjugates to aglycones. USA Patent No. 05827682
  14. Yim, J. S., Y. S. Kim, S. K. Moon, K. H. Cho, H. S. Bae, J. J. Kim. E. K. Park. and D. H. Kim. 2004. Metabolic activities of ginsenoside RbI, baicalin, glycyrrhizin and geniposide to their bioactive compounds by human intestinal microtlora. Biol. Pharm. Bull. 27: 1580-1583 https://doi.org/10.1248/bpb.27.1580
  15. 문상욱, 강신혜, 진영준, 박지권, 이영돈, 이영기, 박덕배, 김세재. 2004. 감귤의 발효와 발효산물의 기능적 특성. 한국식품과학회지 36: 669-676
  16. 은종방, 정영민, 우건조. 1996. 감귤과육 및 과피의 식이섬유와 플라보노이드 검색 및 정량. 한국식품과학회지 28: 371-377
  17. 이상린, 박병화, 김항래, 김태현, 이성구, 정운계, 황재성. 2001. 이소플라본의 아글리콘의 제조 방법. 대한민국 특허 제 10-0302560-0000호
  18. 차재영, 조영수. 2001. 감귤류 플라보노이드의 생리기능 활성. 한국농화학회지 44: 122-128