Stability and Structural Change of cAMP Receptor Protein at Low and High cAMP Concentrations

  • Published : 2005.12.01

Abstract

Proteolytic digestion and CD measurement of wild-type and mutant cyclic AMP receptor proteins (CRPs) were performed either in the presence or absence of cyclic nucleotide. Results indicated that transition of a structural change to the hinge region by the binding of cAMP to the anti site was required for the binding of cAMP to the syn site near the hinge region and, although the occupancy of cAMP in the anti site increased the protein stability, CRP adopted more a stable conformation by the binding of cAMP to the syn site.

Keywords

References

  1. Belduz, A. O., E. J. Lee, and J. G. Harman. 1993. Mutagenesis of the cyclic AMP receptor protein of Escherichia coli: Targeting positions 72 and 82 of the cyclic nucleotide binding pocket. Nucleic Acids Res. 21: 1827-1835 https://doi.org/10.1093/nar/21.8.1827
  2. Brown, A. M. and D. M. Crothers. 1989. Modulation of the stability of a gene-regulatory protein dimer by DNA and cAMP. Proc. Natl. Acad. Sci. USA 86: 7387-7391
  3. Chen, Y., Y. W. Ebright, and R. H. Ebright. 1994. Identification of the target of a transcription activator protein by protein-protein photocrosslinking. Science 265: 90-92 https://doi.org/10.1126/science.8016656
  4. deCrombrugghe, B., S. Busby, and H. Buc. 1984. Cyclic AMP receptor protein: Role in transcription activation. Science 224: 831-838 https://doi.org/10.1126/science.6372090
  5. Gang, J. B. 2004. Measurement of DNA helical change for the binding of cyclic AMP receptor protein to lac DNA. Biochem. Biophys. Res. Commun. 322: 993-997 https://doi.org/10.1016/j.bbrc.2004.08.011
  6. Garges, S. and S. Adhya. 1985. Sites of allosteric shift in the structure of the cyclic AMP receptor protein. Cell 41: 745-751 https://doi.org/10.1016/S0092-8674(85)80055-6
  7. Harman, J. G. 2001. Allosteric regulation of the cAMP receptor protein. Biochim. Biophys. Acta 1547: 1-17 https://doi.org/10.1016/S0167-4838(01)00187-X
  8. Harman, J. G., A. Peterkofsky, and K. McKenney. 1988. Arginine substituted for leucine at position 195 produces a cyclic AMP-independent form of the Escherichia coli cyclic AMP receptor protein. J. Biol. Chem. 263: 8072-8077
  9. Heyduk, E., T. Heyduk, and J. C. Lee. 1992. Global conformational changes in allosteric proteins. J. Biol. Chem. 267: 3200-3204
  10. Lee, E. J., J. Glasgow, S.-F. Leu, A. O. Belduz, and J. G. Harman. 1994. Mutagenesis of the cyclic AMP receptor protein of Escherichia coli. Nucleic Acids Res. 22: 2894-2901 https://doi.org/10.1093/nar/22.15.2894
  11. Malecki, J., A. Polit, and Z. Wasylewski. 2000. Kinetic studies of cAMP-induced allosteric changes in cyclic AMP receptor protein from Escherichia coli. J. Biol. Chem. 275: 8480-8486 https://doi.org/10.1074/jbc.275.12.8480
  12. Mukhopadhyay, J., R. Sur, and P. Parrack. 1999. Functional roles of the cyclic AMP-dependent forms of cyclic AMP receptor protein from Escherichia coli. FEBS Lett. 453: 215-218 https://doi.org/10.1016/S0014-5793(99)00719-X
  13. Park, M. J., J. O. Yon, S. K. Lim, D. D. Ryu, and D. H. Nam. 2004. Biochemical characterization of an ABC transporter gene involved in cephabacin biosynthesis in Lysobacter lactamgenus. J. Microbiol. Biotechnol. 14: 635-638
  14. Passner, J. M. and T. A. Steitz. 1997. The structure of a CAP-DNA complex having two cAMP molecules bound to each monomer. Proc. Natl. Acad. Sci. USA 94: 2843-2847
  15. Pyles, E. A., A. J. Chin, and J. C. Lee. 1998. Escherichia coli cAMP receptor protein-DNA complexes. 1. Energetic contributions of half-sites and flanking sequences in DNA recognition. Biochemistry 37: 5194-5200 https://doi.org/10.1021/bi972450i
  16. Reznikoff, W. S. 1992. Catabolite gene activator protein activation of lac transcription. J. Bacteriol. 174: 655-658 https://doi.org/10.1128/jb.174.3.655-658.1992
  17. Santoro, M. M. and D. W. Bolen. 1988. Unfolding free energy changes determined by the linear extrapolation method. Biochemistry 27: 8063-8068 https://doi.org/10.1021/bi00421a014
  18. Shi, Y., S. Wang, and F. P. Schwarz. 2000. Intersubunit association induces allosteric dependence of the T127L CRP mutant on PH. Biochemistry 39: 7300-7308 https://doi.org/10.1021/bi000225m
  19. Sri, R., F. Tanuwidjaja, Y. Rukayadi, A. Suwanto, M. T. Suhartono, J. K. Hwang, and Y. R. Pyun. 2004. Study of thermostable chitinase enzymes from Indonesian Bacillus K29-14. J. Microbiol. Biotechnol. 14: 647-652
  20. Tagami, H. and H. Aiba 1998. A common role of CRP in transcription activation: CRP acts transiently to stimulate events leading to open complex formation at a diverse set of promoters. EMBO J. 17: 1759-1767 https://doi.org/10.1093/emboj/17.6.1759
  21. Takahashi, M., B. Blazy, and A. Baudras. 1980. An equilibrium study of the cooperative binding of adenosine cyclic 3',5'-monophosphate and guanosine cyclic 3',5'- monophosphate to the adenosine cyclic 3',5'-monophosphate receptor protein from Escherichia coli. Biochemistry 19: 5124-5130 https://doi.org/10.1021/bi00563a029
  22. Weber, I. T. and T. A. Steitz. 1987. Structure of a complex of catabolite gene activator protein and cyclic AMP refined at 2.5 ${\AA}$ resolution. J. Mol. Biol. 198: 311-326 https://doi.org/10.1016/0022-2836(87)90315-9
  23. Yoon, K. P. 2003. Construction and characterization of multiple heavy metal-resistant phenol-degrading Pseudomonads strains. J. Microbiol. Biotechnol. 13: 1001-1007
  24. Yoon, S.-C., J.-H. Lee, S.-H. Ahn, E.-M. Lee, E.-M. Park, and I.-S. Kong. 2003. Purification and comparision of properties of the C-terminus truncated agarase of Pesudomonas sp. W7. J. Microbiol. Biotechnol. 13: 767-772