Solubilization of Hardly Soluble Phosphates and Growth Promotion of Maize (Zea mays L.) by Penicillium oxalicum Isolated from Rhizosphere

  • SHIN WANSIK (Department of Agricultural Chemistry, Chungbuk National University) ;
  • RYU JEOUNGHYUN (Department of Agricultural Chemistry, Chungbuk National University) ;
  • CHOI SEUNGJU (Department of Agricultural Chemistry, Chungbuk National University) ;
  • KIM CHUNGWOO (Department of Agricultural Chemistry, Chungbuk National University) ;
  • GADAGI RAVI (Department of Agricultural Chemistry, Chungbuk National University) ;
  • MADHAIYAN MUNUSAMY (Department of Agricultural Chemistry, Chungbuk National University) ;
  • SESHADRI SUNDARAM (Department of Agricultural Chemistry, Chungbuk National University) ;
  • CHUNG JONGBAE (Division of Life and Environmental Science, Daegu University) ;
  • SA TONGMIN (Department of Agricultural Chemistry, Chungbuk National University)
  • Published : 2005.12.01

Abstract

Penicillium oxalicum strain CBPS-3F-Tsa, an efficient phosphate solubilizing fungus, was evaluated for its production of organic acid in vitro and effect of inoculation on the growth promotion of Maize under greenhouse conditions. The fungus solubilized 129.1, 118.8, and 54.1 mg P/1 of tricalcium phosphate [$Ca_{3}(PO_{4})_{2}$], aluminum phosphate ($A1PO_{4}$),and ferric phosphate ($FePO_{4}$), respectively, after 72 h of incubation. Malic acid, gluconic acid, and oxalic acid were detected in the flasks supplemented with various phosphate sources [240, 146, 145 mM/1 $A1PO_{4},\;FePO_{4},\;and\;Ca_{3}(PO_{4})_{2}$, respectively] together with a large amount of malic acid followed by the other two. The effects of inoculation of P. oxalicum CBPS-3F-Tsa on maize plants were studied under pot culture conditions. P. oxalicum CBPS-3F-Tsa was inoculated to maize plants alone or together with inorganic phosphates in the form of fused phosphates (FP) and rock phosphates (RP). Inoculation of P. oxalicum CBPS-3F-Tsa increased the plant growth and N and P accumulation in plants, compared with control plants, and also had positive effects when applied with RP. The results of this study show that the fungus P. oxalicum strain CBPS-3F-Tsa could solubilize different insoluble phosphates by producing organic acids, particularly malic acid, and also improved the efficiency of RP applied to maize plants.

Keywords

References

  1. Alvarez-sanchez, E., J. D. Etchevers, J. Ortiz, R. Nunez, A. Martinez, and J. Z. Castellanos. 2001. Phosphorus nutrition of potato and maize seedlings. Terra 19: 55-65
  2. Alves, V. M. C., S. N. Parentoni, C. A. Vasconcellos, A. F. C. Bahia Filho, G. V. E. Pitta, and R. E. Schaffert. 2001. Mechanism of phosphorus efficiency in maize, pp. 566-567. In Horst, W. J. et al. (eds.), Plant Nutrition - Food Security and Sustainability of Agro-ecosystems. Kluwer Academic Publishers, The Netherlands
  3. Anghinioni, I. and S. A. Barber. 1980. Predicting the most efficient P placement for corn. Soil Sci. Soc. Am. J. 44: 1016-1020 https://doi.org/10.2136/sssaj1980.03615995004400050029x
  4. Anghinioni, I. and S. A. Barber. 1980. Phosphorus influx and growth characteristics of corn roots as influenced by phosphorus supply. Agron. J. 72: 685-688 https://doi.org/10.2134/agronj1980.00021962007200040028x
  5. Anonymous, 1999. Fertilizer Application Recommendation for Crops. National Institute of Agricultural Sciences and Technology, Suwon, Korea
  6. Antoun, H. 2002. Field and greenhouse trials performed with phosphate-solubilizing bacteria and fungi. In: First International Meeting on Microbial Phosphate Solubilization. Salamanca, Spain, 16-19 July, pp. 29-31
  7. Asea, P. E. A., R. M. N. Kucey, and J. W. B. Stewart. 1988. Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biol. Biochem. 20: 459-464 https://doi.org/10.1016/0038-0717(88)90058-2
  8. Banik, S. and B. K. Dey. 1983. Alluvial soil microorganisms capable of utilizing insoluble aluminium phosphate as a source of phosphorus. Zentralblatt fur Mikrobiologie 138: 437-442
  9. Barber, S. A. 1977. Application of phosphates fertilizers: Methods, rates and time of application in relation to phosphorus status of soils. Phosphor. Agric. 31: 109-115
  10. Barraso, C. B. and E. Nahas. 2004. The status of soil phosphate fractions and the ability of fungi to dissolve hardly soluble phosphates. Appl. Soil Ecol. 29: 73-83 https://doi.org/10.1016/j.apsoil.2004.09.005
  11. Bar-Yosef, B. 1991. Root excretions and their environmental effects: Influence on availability of phosphorus, pp. 529- 557. In: Waisel, Y., Eshel, A., and Kafkafi, U. (eds.), Plant Roots: The Hidden Half. Marcel Dekker, New York, U.S.A
  12. Basu, U., D. Godbold, and G. J. Tayler. 1994. Aluminum resistance in Triticum aestivum L. associated with enhanced exudation of malate. J. Plant Physiol. 144: 747-753 https://doi.org/10.1016/S0176-1617(11)80672-3
  13. Bojinova, D., R. Velkova, I. Grancharov, and S. Zhelev. 1997. The bioconversion of tunisian phosphorite using Aspergillus niger. Nutr. Cycl. Agroecosyst. 47: 227-232 https://doi.org/10.1007/BF01986277
  14. Borkert, C. M. and S. A. Barber. 1985. Predicting the most efficient phosphorus placement for soybeans. Soil Sci. Soc.Am. J. 49: 901-904 https://doi.org/10.2136/sssaj1985.03615995004900040022x
  15. Burgstaller, W., A. Zanella, and F. Schinner. 1994. Buffer stimulated citrate efflux in Penicillium simplicissimum: An alternative charge balancing ion flow in case of reduced proton backflow? Arch. Microbiol. 161: 75-81 https://doi.org/10.1007/BF00248896
  16. Chabot, R., C. J. Beauchamp, J. W. Kloepper, and H. Antoun. 1998. Effect of phosphorus on root colonization and growth promotion of maize by bioluminescent mutants of phosphate solubilizing Rhizobium leguminosarum biovar Phaseoli. Soil Biol. Biochem. 30: 1615-1618 https://doi.org/10.1016/S0038-0717(98)00054-6
  17. Cunningham, J. E. and C. Kuiack. 1992. Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilajii. Appl. Environ. Microbiol. 58: 1451- 1458
  18. Delhaize, E., P. R. Ryan, and P. J. Randall. 1993. Aluminum tolerance in wheat (Triticum aestivum L.). (II. Aluminum stimulated excretion of malic acid from root apices.) Plant Physiol. 103: 695-702 https://doi.org/10.1104/pp.103.3.695
  19. Gallmetzer, M. and W. Burgstaller. 2001. Citrate efflux in glucose-limited and glucose-sufficient chemostat culture of Penicillium simplicissimum. Anton. Leeuw. Int. J. G. 79: 81- 87 https://doi.org/10.1023/A:1010295924549
  20. Gallmetzer, M. and W. Burgstaller. 2002. Efflux of organic acids in Penicillium simplicissimum is an energy-spilling process, adjusting the catabolic carbon flow to the nutrient supply and the activity of catabolic pathways. Microbiology 148: 1143-1149 https://doi.org/10.1099/00221287-148-4-1143
  21. Garg, K. P. and L. F. Welch. 1967. Growth and phosphorus uptake by corn as influenced by phosphorus placement. Agron. J. 59: 152-154 https://doi.org/10.2134/agronj1967.00021962005900020008x
  22. Goldstein, A. H. 1986. Bacterial solubilization of mineral phosphates. Historical perspective and future prospects. Am. J. Alt. Agric. 1: 51-57 https://doi.org/10.1017/S0889189300000886
  23. Hocking, A. D., M. Whitelaw, and T. J. Harden. 1998. Penicillium radicum sp. nov. from the rhizosphere of Australian wheat. Mycol. Res. 102: 801-806 https://doi.org/10.1017/S0953756297005698
  24. Illmer, P., A. Barbato, and F. Schinner. 1995. Solubilization of hardly soluble $AlPO_4$ with P-solubilizing microorganisms. Soil Biol. Biochem. 27: 265-270 https://doi.org/10.1016/0038-0717(94)00205-F
  25. Illmer, P. and F. Schinner. 1995. Solubilization of inorganic calcium phosphates: Solubilization mechanisms. Soil Biol. Biochem. 27: 257-263 https://doi.org/10.1016/0038-0717(94)00190-C
  26. Itoh, S. and S. A. Barber. 1983. A numerical solution of whole plant nutrient uptake for soil-root systems with root hairs. Plant Soil 70: 403-413 https://doi.org/10.1007/BF02374895
  27. Iwase, K. 1992. Gluconic acid synthesis by the ectomycorrhizal fungus Tricholoma robustum. Can. J. Bot. 70: 84-88 https://doi.org/10.1139/b92-011
  28. Jackson, M. L. 1973. Soil Chemical Analysis. Prentice Hall of India Private Ltd., New Delhi, India
  29. Jungk, A. and S. A. Barber. 1975. Plant age and the phosphorus uptake characteristics of trimmed and untrimmed corn root systems. Plant Soil 42: 227-23 https://doi.org/10.1007/BF02186985
  30. Kim, E. H., S. Seshadri, M. S. Park, W. S. Shin, and T. M. Sa. 2003. Influence of carbon and nitrogen sources in solubilization of hardly soluble mineral phosphates by Penicillium oxalicum CBPS-3F-Tsa. Korean J. Environ. Agric. 22: 197-202 https://doi.org/10.5338/KJEA.2003.22.3.197
  31. Krzystek, L., P. Gluszcz, and S. Ledakowicz. 1996. Determination of yield and maintenance coefficients in citric acid production by Aspergillus niger. Chem. Eng. J. 62: 215-222
  32. Kucey, R. M. N., H. H. Janzen, and M. E. Leggett. 1989. Microbial mediated increases in plant-available phosphorus. Adv. Agron. 42: 199-228 https://doi.org/10.1016/S0065-2113(08)60525-8
  33. Lu, S. and M. H. Miller. 1994. Prediction of phosphorus uptake by field-grown maize with the Barber-Cushman model. Soil Sci. Soc. Am. J. 58: 852-857 https://doi.org/10.2136/sssaj1994.03615995005800030032x
  34. Lu, S. and M. H. Miller. 1993. Determination of the most efficient phosphorus placement for field grown maize in early growth stages. Can. J. Soil Sci. 73: 349-358 https://doi.org/10.4141/cjss93-037
  35. Ma, J. F. 2000. Role of organic acids in detoxification of aluminum in higher plants. Plant Cell Physiol. 41: 383-390 https://doi.org/10.1093/pcp/41.4.383
  36. Mba, C. C. 1997. Rock phosphate-solubilizing Streptosporangium isolates from casts of tropical earthworms. Soil Biol. Biochem. 29: 381-385 https://doi.org/10.1016/S0038-0717(96)00170-8
  37. McIntyre, M. and B. McNeil. 1997. Dissolved carbon dioxide effects on morphology, growth, and citrate production in Aspergillus niger A60. Enzyme Microb. Technol. 20: 135-142 https://doi.org/10.1016/S0141-0229(96)00108-1
  38. Murphy, J. and J. P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27: 31-36 https://doi.org/10.1016/S0003-2670(00)88444-5
  39. Nahas, E., J. F. Centurion, and L. C. Assis. 1994. Microrganismos solubilizadores de fosfato e produtores de fosfatases de va rios solos. Rev. Bras. Ci. Solo. 18: 43-48
  40. Nautiyal, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170: 265-270 https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
  41. Nielson, J., C. L. Johansen, and J. Villadsen. 1994. Culture fluorescence measurements during batch and fed-batch cultivation with Penicillium chrysogenum. J. Bacteriol. 38: 51-62
  42. Pacina, R., G. Bonn, and R. H. Burris. 1984. High performance liquid chromatographic elution behavior of alcohols, aldehydes, ketones, organic acids and carbohydrates on a strong cation exchange stationary phase. J. Chromatogr. 278: 245-258
  43. Pitt, D., M. J. Mosley, and J. C. Barnes. 1983. Glucose oxidase activity and gluconate production during calcium induced conidiation of Penicillium notatum in submerged culure. Trans. Br. Mycol. Soc. 81: 21-27 https://doi.org/10.1016/S0007-1536(83)80199-5
  44. Reyes, I., L. Bernier, and H. Antoun. 2002. Rock phosphate solubilization and colonization of maize rhizosphere by wild and genetically modified strains of Penicillium rugulosum. Microb. Ecol. 44: 39-48 https://doi.org/10.1007/s00248-002-1001-8
  45. Reyes, I., L. Bernier, R. R. Simard, P. Tanguay, and H. Antoun. 1998. Characteristics of phosphate solubilization by an isolate of a tropical Penicillium rugulosum and two UV-induced mutants. FEMS Microbiol. Ecol. 28: 291-295
  46. Reyes, I., L. Bernier, R. R. Simard, and H. Antoun. 1999. Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants. FEMS Microbiol. Ecol. 28: 281-290 https://doi.org/10.1111/j.1574-6941.1999.tb00583.x
  47. Rhodes, F. M. 1975. Leaf area and plant height as indicators of plant response to fertilization of Corn. In: Soil and Crop Science Society of Florida Proceedings, 85 (18, 19, and 20)
  48. Romer, W. and G. Schilling. 1986. Phosphorus requirement of the wheat plant in various stages of its life cycle. Plant Soil 91: 221-229 https://doi.org/10.1007/BF02181789
  49. Roos, W. and M. Luckner. 1984. Relationships between proton extrusion and fluxes of ammonium ions and organic acids in Penicillium cyclopium. J. Gen. Microbiol. 130: 1007-1014
  50. Salih, H. M., A. I. Yahya, R. A. Abdul, and B. H. Munam. 1989. Availability of phosphorus in a calcareous soil treated with rock phosphate or fused phosphate as affected by phosphate dissolving fungi. Plant Soil 120: 181-185 https://doi.org/10.1007/BF02377067
  51. Sperber, J. I. 1958. The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Aust. J. Agric. Res. 9: 778-781
  52. Stevenson, F. J. 1967. Organic acids in soil, pp. 130-146. In: McLaren, A. D. and Peterson, G. H. (eds.), Soil Biochemistry. Marcel Dekker, New York, U.S.A
  53. Stumm, W. and J. J. Morgan. 1995. Aquatic Chemistry. Chemical Equilibria and Rates in Natural Waters, 3rd Ed.John Wiley, New York
  54. SundaraRao, W. V. B. and M. K. Sinha. 1963. Phosphate dissolving microorganisms in the soil and rhizosphere. Indian J. Agric. Sci. 33: 272-278
  55. Tarafdar, J. C. and A. V. Rao. 1996. Contribution of Aspergillus strains to acquisition of phosphorus by wheat (Triticum aestivum L.) and Chickpea (Cicer arietinum Linn.) grown in a loamy sand soil. Appl. Soil Ecol. 3: 109-114 https://doi.org/10.1016/0929-1393(95)00084-4
  56. Tinker, P. B. 1981. Root distribution and nutrient uptake. In: Russsel, R. S., K. Figue and Y. R. Mehta. The Soil/Root System in Relation to Brazilian Agriculture. Instituto Agronomico Do Parana. Proceedings of the Symposium on the Soil
  57. Vassilev, N., M. Fenice, and F. Fedirici. 1996. Rock phosphate solubilization with gluconic acid produced by immobilized Penicillium variabile P16. Biotechnol. Tech. 10: 585-588 https://doi.org/10.1007/BF00157366
  58. Vassileva, M., N. Vassilev, and R. Azcon. 1998. Rock phosphate solubilization by Aspergillus niger on olive cakebased medium and its further application in a soil-plant system. World J. Microbiol. Biotech. 14: 281-284 https://doi.org/10.1023/A:1008858802855
  59. Wakelin, S. A. and R. A. Warren. 2004. Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol. Fertil. Soils 40: 36-43 https://doi.org/10.1007/s00374-004-0750-6
  60. Wallrath, J., M. Schmidt, and H. Weiss. 1992. Correlation between manganese-deficiency, loss of respiratory chain complex I activity and citric acid production in Aspergillus niger. Arch. Microbiol. 158: 435-438
  61. Whitelaw, M. A., T. J. Harden, and G. L. Bender. 1997. Plant growth promotion of wheat inoculated with Penicillium radicum sp. nov. Aust. J. Soil Res. 35: 291-300 https://doi.org/10.1071/S96040
  62. Whitelaw, M. A., T. J. Harden, and K. R. Helyar. 1999. Phosphate solubilization in solution culture by the soil fungus Penicillium radicum. Soil Biol. Biochem. 31: 655-665 https://doi.org/10.1016/S0038-0717(98)00130-8
  63. Whitelaw, M. A. 2000. Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv. Agron. 69: 99-151 https://doi.org/10.1016/S0065-2113(08)60948-7