References
- Alvarez-sanchez, E., J. D. Etchevers, J. Ortiz, R. Nunez, A. Martinez, and J. Z. Castellanos. 2001. Phosphorus nutrition of potato and maize seedlings. Terra 19: 55-65
- Alves, V. M. C., S. N. Parentoni, C. A. Vasconcellos, A. F. C. Bahia Filho, G. V. E. Pitta, and R. E. Schaffert. 2001. Mechanism of phosphorus efficiency in maize, pp. 566-567. In Horst, W. J. et al. (eds.), Plant Nutrition - Food Security and Sustainability of Agro-ecosystems. Kluwer Academic Publishers, The Netherlands
- Anghinioni, I. and S. A. Barber. 1980. Predicting the most efficient P placement for corn. Soil Sci. Soc. Am. J. 44: 1016-1020 https://doi.org/10.2136/sssaj1980.03615995004400050029x
- Anghinioni, I. and S. A. Barber. 1980. Phosphorus influx and growth characteristics of corn roots as influenced by phosphorus supply. Agron. J. 72: 685-688 https://doi.org/10.2134/agronj1980.00021962007200040028x
- Anonymous, 1999. Fertilizer Application Recommendation for Crops. National Institute of Agricultural Sciences and Technology, Suwon, Korea
- Antoun, H. 2002. Field and greenhouse trials performed with phosphate-solubilizing bacteria and fungi. In: First International Meeting on Microbial Phosphate Solubilization. Salamanca, Spain, 16-19 July, pp. 29-31
- Asea, P. E. A., R. M. N. Kucey, and J. W. B. Stewart. 1988. Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biol. Biochem. 20: 459-464 https://doi.org/10.1016/0038-0717(88)90058-2
- Banik, S. and B. K. Dey. 1983. Alluvial soil microorganisms capable of utilizing insoluble aluminium phosphate as a source of phosphorus. Zentralblatt fur Mikrobiologie 138: 437-442
- Barber, S. A. 1977. Application of phosphates fertilizers: Methods, rates and time of application in relation to phosphorus status of soils. Phosphor. Agric. 31: 109-115
- Barraso, C. B. and E. Nahas. 2004. The status of soil phosphate fractions and the ability of fungi to dissolve hardly soluble phosphates. Appl. Soil Ecol. 29: 73-83 https://doi.org/10.1016/j.apsoil.2004.09.005
- Bar-Yosef, B. 1991. Root excretions and their environmental effects: Influence on availability of phosphorus, pp. 529- 557. In: Waisel, Y., Eshel, A., and Kafkafi, U. (eds.), Plant Roots: The Hidden Half. Marcel Dekker, New York, U.S.A
- Basu, U., D. Godbold, and G. J. Tayler. 1994. Aluminum resistance in Triticum aestivum L. associated with enhanced exudation of malate. J. Plant Physiol. 144: 747-753 https://doi.org/10.1016/S0176-1617(11)80672-3
- Bojinova, D., R. Velkova, I. Grancharov, and S. Zhelev. 1997. The bioconversion of tunisian phosphorite using Aspergillus niger. Nutr. Cycl. Agroecosyst. 47: 227-232 https://doi.org/10.1007/BF01986277
- Borkert, C. M. and S. A. Barber. 1985. Predicting the most efficient phosphorus placement for soybeans. Soil Sci. Soc.Am. J. 49: 901-904 https://doi.org/10.2136/sssaj1985.03615995004900040022x
- Burgstaller, W., A. Zanella, and F. Schinner. 1994. Buffer stimulated citrate efflux in Penicillium simplicissimum: An alternative charge balancing ion flow in case of reduced proton backflow? Arch. Microbiol. 161: 75-81 https://doi.org/10.1007/BF00248896
- Chabot, R., C. J. Beauchamp, J. W. Kloepper, and H. Antoun. 1998. Effect of phosphorus on root colonization and growth promotion of maize by bioluminescent mutants of phosphate solubilizing Rhizobium leguminosarum biovar Phaseoli. Soil Biol. Biochem. 30: 1615-1618 https://doi.org/10.1016/S0038-0717(98)00054-6
- Cunningham, J. E. and C. Kuiack. 1992. Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilajii. Appl. Environ. Microbiol. 58: 1451- 1458
- Delhaize, E., P. R. Ryan, and P. J. Randall. 1993. Aluminum tolerance in wheat (Triticum aestivum L.). (II. Aluminum stimulated excretion of malic acid from root apices.) Plant Physiol. 103: 695-702 https://doi.org/10.1104/pp.103.3.695
- Gallmetzer, M. and W. Burgstaller. 2001. Citrate efflux in glucose-limited and glucose-sufficient chemostat culture of Penicillium simplicissimum. Anton. Leeuw. Int. J. G. 79: 81- 87 https://doi.org/10.1023/A:1010295924549
- Gallmetzer, M. and W. Burgstaller. 2002. Efflux of organic acids in Penicillium simplicissimum is an energy-spilling process, adjusting the catabolic carbon flow to the nutrient supply and the activity of catabolic pathways. Microbiology 148: 1143-1149 https://doi.org/10.1099/00221287-148-4-1143
- Garg, K. P. and L. F. Welch. 1967. Growth and phosphorus uptake by corn as influenced by phosphorus placement. Agron. J. 59: 152-154 https://doi.org/10.2134/agronj1967.00021962005900020008x
- Goldstein, A. H. 1986. Bacterial solubilization of mineral phosphates. Historical perspective and future prospects. Am. J. Alt. Agric. 1: 51-57 https://doi.org/10.1017/S0889189300000886
- Hocking, A. D., M. Whitelaw, and T. J. Harden. 1998. Penicillium radicum sp. nov. from the rhizosphere of Australian wheat. Mycol. Res. 102: 801-806 https://doi.org/10.1017/S0953756297005698
-
Illmer, P., A. Barbato, and F. Schinner. 1995. Solubilization of hardly soluble
$AlPO_4$ with P-solubilizing microorganisms. Soil Biol. Biochem. 27: 265-270 https://doi.org/10.1016/0038-0717(94)00205-F - Illmer, P. and F. Schinner. 1995. Solubilization of inorganic calcium phosphates: Solubilization mechanisms. Soil Biol. Biochem. 27: 257-263 https://doi.org/10.1016/0038-0717(94)00190-C
- Itoh, S. and S. A. Barber. 1983. A numerical solution of whole plant nutrient uptake for soil-root systems with root hairs. Plant Soil 70: 403-413 https://doi.org/10.1007/BF02374895
- Iwase, K. 1992. Gluconic acid synthesis by the ectomycorrhizal fungus Tricholoma robustum. Can. J. Bot. 70: 84-88 https://doi.org/10.1139/b92-011
- Jackson, M. L. 1973. Soil Chemical Analysis. Prentice Hall of India Private Ltd., New Delhi, India
- Jungk, A. and S. A. Barber. 1975. Plant age and the phosphorus uptake characteristics of trimmed and untrimmed corn root systems. Plant Soil 42: 227-23 https://doi.org/10.1007/BF02186985
- Kim, E. H., S. Seshadri, M. S. Park, W. S. Shin, and T. M. Sa. 2003. Influence of carbon and nitrogen sources in solubilization of hardly soluble mineral phosphates by Penicillium oxalicum CBPS-3F-Tsa. Korean J. Environ. Agric. 22: 197-202 https://doi.org/10.5338/KJEA.2003.22.3.197
- Krzystek, L., P. Gluszcz, and S. Ledakowicz. 1996. Determination of yield and maintenance coefficients in citric acid production by Aspergillus niger. Chem. Eng. J. 62: 215-222
- Kucey, R. M. N., H. H. Janzen, and M. E. Leggett. 1989. Microbial mediated increases in plant-available phosphorus. Adv. Agron. 42: 199-228 https://doi.org/10.1016/S0065-2113(08)60525-8
- Lu, S. and M. H. Miller. 1994. Prediction of phosphorus uptake by field-grown maize with the Barber-Cushman model. Soil Sci. Soc. Am. J. 58: 852-857 https://doi.org/10.2136/sssaj1994.03615995005800030032x
- Lu, S. and M. H. Miller. 1993. Determination of the most efficient phosphorus placement for field grown maize in early growth stages. Can. J. Soil Sci. 73: 349-358 https://doi.org/10.4141/cjss93-037
- Ma, J. F. 2000. Role of organic acids in detoxification of aluminum in higher plants. Plant Cell Physiol. 41: 383-390 https://doi.org/10.1093/pcp/41.4.383
- Mba, C. C. 1997. Rock phosphate-solubilizing Streptosporangium isolates from casts of tropical earthworms. Soil Biol. Biochem. 29: 381-385 https://doi.org/10.1016/S0038-0717(96)00170-8
- McIntyre, M. and B. McNeil. 1997. Dissolved carbon dioxide effects on morphology, growth, and citrate production in Aspergillus niger A60. Enzyme Microb. Technol. 20: 135-142 https://doi.org/10.1016/S0141-0229(96)00108-1
- Murphy, J. and J. P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27: 31-36 https://doi.org/10.1016/S0003-2670(00)88444-5
- Nahas, E., J. F. Centurion, and L. C. Assis. 1994. Microrganismos solubilizadores de fosfato e produtores de fosfatases de va rios solos. Rev. Bras. Ci. Solo. 18: 43-48
- Nautiyal, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170: 265-270 https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
- Nielson, J., C. L. Johansen, and J. Villadsen. 1994. Culture fluorescence measurements during batch and fed-batch cultivation with Penicillium chrysogenum. J. Bacteriol. 38: 51-62
- Pacina, R., G. Bonn, and R. H. Burris. 1984. High performance liquid chromatographic elution behavior of alcohols, aldehydes, ketones, organic acids and carbohydrates on a strong cation exchange stationary phase. J. Chromatogr. 278: 245-258
- Pitt, D., M. J. Mosley, and J. C. Barnes. 1983. Glucose oxidase activity and gluconate production during calcium induced conidiation of Penicillium notatum in submerged culure. Trans. Br. Mycol. Soc. 81: 21-27 https://doi.org/10.1016/S0007-1536(83)80199-5
- Reyes, I., L. Bernier, and H. Antoun. 2002. Rock phosphate solubilization and colonization of maize rhizosphere by wild and genetically modified strains of Penicillium rugulosum. Microb. Ecol. 44: 39-48 https://doi.org/10.1007/s00248-002-1001-8
- Reyes, I., L. Bernier, R. R. Simard, P. Tanguay, and H. Antoun. 1998. Characteristics of phosphate solubilization by an isolate of a tropical Penicillium rugulosum and two UV-induced mutants. FEMS Microbiol. Ecol. 28: 291-295
- Reyes, I., L. Bernier, R. R. Simard, and H. Antoun. 1999. Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants. FEMS Microbiol. Ecol. 28: 281-290 https://doi.org/10.1111/j.1574-6941.1999.tb00583.x
- Rhodes, F. M. 1975. Leaf area and plant height as indicators of plant response to fertilization of Corn. In: Soil and Crop Science Society of Florida Proceedings, 85 (18, 19, and 20)
- Romer, W. and G. Schilling. 1986. Phosphorus requirement of the wheat plant in various stages of its life cycle. Plant Soil 91: 221-229 https://doi.org/10.1007/BF02181789
- Roos, W. and M. Luckner. 1984. Relationships between proton extrusion and fluxes of ammonium ions and organic acids in Penicillium cyclopium. J. Gen. Microbiol. 130: 1007-1014
- Salih, H. M., A. I. Yahya, R. A. Abdul, and B. H. Munam. 1989. Availability of phosphorus in a calcareous soil treated with rock phosphate or fused phosphate as affected by phosphate dissolving fungi. Plant Soil 120: 181-185 https://doi.org/10.1007/BF02377067
- Sperber, J. I. 1958. The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Aust. J. Agric. Res. 9: 778-781
- Stevenson, F. J. 1967. Organic acids in soil, pp. 130-146. In: McLaren, A. D. and Peterson, G. H. (eds.), Soil Biochemistry. Marcel Dekker, New York, U.S.A
- Stumm, W. and J. J. Morgan. 1995. Aquatic Chemistry. Chemical Equilibria and Rates in Natural Waters, 3rd Ed.John Wiley, New York
- SundaraRao, W. V. B. and M. K. Sinha. 1963. Phosphate dissolving microorganisms in the soil and rhizosphere. Indian J. Agric. Sci. 33: 272-278
- Tarafdar, J. C. and A. V. Rao. 1996. Contribution of Aspergillus strains to acquisition of phosphorus by wheat (Triticum aestivum L.) and Chickpea (Cicer arietinum Linn.) grown in a loamy sand soil. Appl. Soil Ecol. 3: 109-114 https://doi.org/10.1016/0929-1393(95)00084-4
- Tinker, P. B. 1981. Root distribution and nutrient uptake. In: Russsel, R. S., K. Figue and Y. R. Mehta. The Soil/Root System in Relation to Brazilian Agriculture. Instituto Agronomico Do Parana. Proceedings of the Symposium on the Soil
- Vassilev, N., M. Fenice, and F. Fedirici. 1996. Rock phosphate solubilization with gluconic acid produced by immobilized Penicillium variabile P16. Biotechnol. Tech. 10: 585-588 https://doi.org/10.1007/BF00157366
- Vassileva, M., N. Vassilev, and R. Azcon. 1998. Rock phosphate solubilization by Aspergillus niger on olive cakebased medium and its further application in a soil-plant system. World J. Microbiol. Biotech. 14: 281-284 https://doi.org/10.1023/A:1008858802855
- Wakelin, S. A. and R. A. Warren. 2004. Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol. Fertil. Soils 40: 36-43 https://doi.org/10.1007/s00374-004-0750-6
- Wallrath, J., M. Schmidt, and H. Weiss. 1992. Correlation between manganese-deficiency, loss of respiratory chain complex I activity and citric acid production in Aspergillus niger. Arch. Microbiol. 158: 435-438
- Whitelaw, M. A., T. J. Harden, and G. L. Bender. 1997. Plant growth promotion of wheat inoculated with Penicillium radicum sp. nov. Aust. J. Soil Res. 35: 291-300 https://doi.org/10.1071/S96040
- Whitelaw, M. A., T. J. Harden, and K. R. Helyar. 1999. Phosphate solubilization in solution culture by the soil fungus Penicillium radicum. Soil Biol. Biochem. 31: 655-665 https://doi.org/10.1016/S0038-0717(98)00130-8
- Whitelaw, M. A. 2000. Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv. Agron. 69: 99-151 https://doi.org/10.1016/S0065-2113(08)60948-7