References
- Audrey, P. G., P. T. Spellman, C. M. Kao, C. H. Orna, M. B. Eisen, G. Storz, D. Botstein, and P. O. Brown. 2000. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell. 11: 4241-4257 https://doi.org/10.1091/mbc.11.12.4241
- Bengt, L. P., J. O. Lagerstedt, J. R. Pratt, P. G. Johanna, K. Lundh, S. Shokrollahzadeh, and F. Lundh. 2003. Regulation of phosphate acquisition in Saccharomyces cerevisiae. Curr. Genet. 225: 225-244
- Birgitte R., S. Holmberg, L. D. Olsen, and M. C. Kielland- Brandt. 1998. Dip5p mediates high-affinity and high-capacity transport of L-glutamate and L-aspartate in Saccharomyces cerevisiae. Curr. Genet. 33: 171-177 https://doi.org/10.1007/s002940050324
- Choowong, A., T. Homma, H. Tochio, M. Shirakawa, Y. Kaneko, and S. Harashima. 2004. Intracellular phosphate serves as a signal for the regulation of the PHO pathway in Saccharomyces cerevisiae. J. Biol. Chem. 279: 17289- 17294 https://doi.org/10.1074/jbc.M312202200
- Church, G. M. and W. Gilbert. 1984. Genomic sequencing. Proc. Natl. Acad. Sci. USA 81: 1991-1995
- David, G., T. Rushmore, and C. T. Caskey. 1999. DNA chips: Promising toys have become powerful tools. Trends Biochem. Sci. 24: 168-173 https://doi.org/10.1016/S0968-0004(99)01382-1
- Francisca, R. G., P. Sanz, and J. A. Prieto. 1999. Engineering baker's yeast: Room for improvement. Trends Biotechnol. 17: 237-244 https://doi.org/10.1016/S0167-7799(99)01318-9
- Frank, C. P. H., E. G. Jennings, J. J. Wyrick, T. I. Lee, C. J. Hengartner, M. R. Green, T. R. Golub, E. S. Lander, and R. A. Young. 1998. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95: 717-728 https://doi.org/10.1016/S0092-8674(00)81641-4
- Gasch, A. P. 2002. Yeast genomic expression studies using DNA microarrays. Methods Enzymol. 350: 393-414 https://doi.org/10.1016/S0076-6879(02)50976-9
- Gasch, A. P. and M. Werner-Washburne. 2002. The genomics of yeast responses to environmental stress and starvation. Funct. Integr. Genomics 2: 181-192 https://doi.org/10.1007/s10142-002-0058-2
- Gross, C. and K. Watson. 1996. Heat shock protein synthesis and trehalose accumulation are not required for induced thermotolerance in depressed Saccharomyces cerevisiae. Biochem. Biophys. Comm. 220: 766-772 https://doi.org/10.1006/bbrc.1996.0478
- Gross, C. and K. Watson. 1998. Application of mRNA differential display to investigate gene expression in thermotolerant cells of Saccharomyces cerevisiae. Yeast 14: 431-432 https://doi.org/10.1002/(SICI)1097-0061(19980330)14:5<431::AID-YEA242>3.0.CO;2-V
- Helen, C. C., B. Ren, S. S. Koh, C. T. Harbison, E. Kanin, E. G. Jennings, T. I. Lee, H. L. True, E. S. Lander, and R. A. Young. 2001. Remodeling of yeast genome expression in response to environmental changes. Mol. Biol. Cell. 12: 323-337 https://doi.org/10.1091/mbc.12.2.323
-
Heo, S. Y., J. K. Kim, Y. M. Kim, and S. W. Nam. 2004. Xylan hydrolysis by treatment with endoxylanase and
$\beta$ - xylosidase expressed in yeast. J. Microbiol. Biotechnol. 14: 171-177 - Kim, J. W., I. N. Jin, and J. H. Seu. 1995. Isolation of Saccharomyces cerevisiae F38-1, a thermotolerant yeast for fuel alcohol production at high temperature. Kor. J. Appl. Microbiol. Biotechnol. 23: 617-623
- Kim, J. W., S. H. Kim, and I. N. Jin. 1995. The fermentation characteristics of Saccharomyces cerevisiae F38-1, a thermotolerant yeast isolated for fuel alcohol production at elevated temperature. Kor. J. Appl. Microbiol. Biotechnol. 23: 624-631
- Kosman, D. J. 2003. Molecular mechanisms of iron uptake in fungi. Mol. Microbiol. 47: 1185-1197 https://doi.org/10.1046/j.1365-2958.2003.03368.x
- Lim, Y. S., S. M. Bae, and K. Kim. 2005. Mass production of yeast spores from compressed yeast. J. Microbiol. Biotechnol. 15: 568-572
- Maria, M. P., S. Puig, and D. J. Thiele. 2000. Characterization of the Saccharomyces cerevisiae high affinity copper transporter Ctr3. J. Biol. Chem. 275: 33244-33251 https://doi.org/10.1074/jbc.M005392200
- Oh, K. S., S. K. Oh, Y. W. Oh, M. J. Sohn, S. G. Jung, Y. K. Kim, M. G. Kim, S. K. Rhee, G. Gellissen, and H. A. Kang. 2004. Fabrication of a partial genome microarray of the methylotrophic yeast Hansenula polymorpha: Optimization and evaluation of transcript profiling. J. Microbiol. Biotechnol. 14: 1239-1278
- Oshima, Y. 1997. The phosphatase system in Saccharomyces cerevisiae. Genes Genet. Syst. 72: 323-334 https://doi.org/10.1266/ggs.72.323
- Paik, S. K., H. S. Yun, H. Y. Sohn, and I. N. Jin. 2003. Effect of trehalose accumulation on the intrinsic and acquired thermotolerance in a natural isolate, Saccharomyces cerevisiae KNU5377. J. Microbiol. Biotechnol. 13: 85-89
- Pascale, D. L., J. M. Daran, P. Kotter, T. Petit, M. D. W. Piper, and J. T. Pronk. 2003. Comparative genotyping of the Saccharomyces cerevisiae laboratory strains S288C and CEN.PK 113-7D using oligonucleotide microarrays. FEMS Yeast Res. 4: 259-269 https://doi.org/10.1016/S1567-1356(03)00156-9
- Schmitt, M. E., T. A. Brown, and B. L. Trumpower. 1990. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 18: 3091-3092 https://doi.org/10.1093/nar/18.10.3091
- Stefan, H. and W. H. Mager. 2003. Yeast Stress Response, pp. 201-240. 2nd Ed. Springer-Verlag Berlin Heidelberg, New York, U.S.A
- Strathern, J. N., E. W. Jones, and J. R. Bioach. 1982. The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression, pp. 399-461. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, U.S.A
- Vishwanath, R. I., C. Gross, M. Kellehers, P. O. Brown, and D. R. Winge. 2000. Identification of the copper regulon in Saccharomyces cerevisiae by DNA microarrays. J. Biol. Chem. 275: 32310-32316 https://doi.org/10.1074/jbc.M005946200
- Yun, H. S., S. K. Paik, I. S. Kim, I. K. Rhee, C. B. Yu, and I. Y. Jin. 2003. Stress response of a thermotolerant alcoholfermenting yeast strain, Saccahromyces cerevisiae KNU5377, against inorganic acids and its alcohol fermentation productivity under the presence of these acids. Kor. J. Life Sci. 13: 110-117 https://doi.org/10.5352/JLS.2003.13.1.110
- Yun, H. S., S. K. Paik, I. S. Kim, I. N. Jin, and H. Y. Shon. 2004. Direct evidence of intracellular alkalinization in Saccharomyces cerevisiae KNU5377 exposed to inorganic acid. J. Microbiol. Biotechnol. 14: 243-249