Influence of Electric Potential on Structure and Function of Biofilm in Wastewater Treatment Reactor : Bacterial Oxidation of Organic Carbons Coupled to Bacterial Denitrification

  • NA BYUNG KWAN (Department of Biological Engineering, Seokyeong University) ;
  • SANG BYUNG IN (Division of Water Environment and Remediation, KIST) ;
  • PARK DAE WON (Division of Water Environment and Remediation, KIST) ;
  • PARK DOO HYUN (Department of Biological Engineering, Seokyeong University)
  • Published : 2005.12.01

Abstract

Carbon electrode was applied to a wastewater treatment system as biofilm media. The spatial distribution of heterotrophic bacteria in aerobic wastewater biofilm grown on carbon electrode was investigated by scanning electron microscopy, atomic force microscopy, and biomass measurement. Five volts of electric oxidation and reduction potential were charged to the carbon anode and cathode of the bioelectrochemical system, respectively, but were not charged to electrodes of a conventional system. To correlate the biofilm architecture of bacterial populations with their activity, the bacterial treatment efficiency of organic carbons was measured in the bioelectrochemical system and compared with that in the conventional system. In the SEM image, the biofilm on the anodic medium of the bioelectrochemical system looked intact and active; however, that on the carbon medium of the conventional system appeared to be shrinking or damaging. In the AFM image, the thickness of biofilm formed on the carbon medium was about two times of those on the anodic medium. The bacterial treatment efficiency of organic carbons in the bioelectrochemical system was about 1.5 times higher than that in the conventional system. Some denitrifying bacteria can metabolically oxidize $H_{2}$, coupled to reduction of $NO_{3}^{-}\;to\;N_{2}$. $H_{2}$ was produced from the cathode in the bioelectrochemical system by electrolysis of water but was not so in the conventional system. The denitrification efficiency was less than $22\%$ in the conventional system and more than $77\%$ in the bioelectrochemical system. From these results, we found that the electrochemical coupling reactions between aerobic and anaerobic reactors may be a useful tool for improvement of wastewater treatment and denitrification efficiency, without special manipulations such as bacterial growth condition control, C/N ratio (the ratio of carbon to nitrogen) control, MLSS returning, or biofilm refreshing.

Keywords

References

  1. Ahn, I.-S., M.-W. Kim, H.-J. La, K.-M. Choi, and J.-C. Kwon. 2003. Bacterial community composition of activated sludge relative to type and efficiency of municipal wastewater treatment plants. J. Microbiol. Biotechnol. 13: 15-21
  2. Arnold, E. G., L. S. Clesceri, and A. D. Eaton (eds.). 1992. Standard Methods for the Examination of Water and Wastewater, 18th edition, pp. 4-87, pp. 4-89, pp. 5-9. Published by American Public Health Association, NW Washington, DC20005
  3. Caldwell, D. E., D. R. Korber, and J. R. Lawrence. 1992. Confocal laser microscopy and digital image analysis in microbial ecology. Adv. Microb. Ecol. 12: 1-67
  4. Costerton, J. W., A. Lewandowski, D. DeBeer, D. E. Caldwell, D. R. Korber, and G. James. 1994. Biofilms, the customized micro niche. J. Bacteriol. 176: 2137-2142 https://doi.org/10.1128/jb.176.8.2137-2142.1994
  5. Costerton, J. W., Z. Lewandowski, D. E. Caldwell, D. R. Korber, and H. M. Lappin-Scott. 1995. Microbial biofilms. Annu. Rev. Microbiol. 49: 711-745 https://doi.org/10.1146/annurev.mi.49.100195.003431
  6. Dalton, H. M., L. K. Poulsen, P. Halasz, M. I. Angles, A. E. Goodman, and K. C. Marshell. 1994. Substratum-induced morphological changes in marine bacterium and their relevance to biofilm structure. J. Bacteriol. 176: 6900-6906 https://doi.org/10.1128/jb.176.22.6900-6906.1994
  7. deBeer, D., A. Schramm, C. M. Santegoeds, and M. Kuhl. 1997. A nitrite microsensor for profiling environmental biofilms. Appl. Environ. Microbiol. 63: 973-977
  8. Grotenhuis, J. T. C., M. Smit, C. M. Plugge, X. Yuansheng, A. A. M. van Lammeren, A. J. M. Stams, and J. B. Zchnder. 1991. Bacteriological composition and structure of granular sludge adapted to different substrates. Appl. Environ. Microbiol. 57: 1942-1949
  9. Hongo, M. and M. Iwahara. 1979. Application of electroenergizing method to L-glutamic acid fermentation. Agric. Biol. Chem. 43: 2075-2081 https://doi.org/10.1271/bbb1961.43.2075
  10. Isaacs, S., M. Henze, H. Soeberg, and M. Jummel. 1994. External carbon source addition as a means to control an activated sludge nutrient removal process. Wat. Res. 28: 511-520 https://doi.org/10.1016/0043-1354(94)90002-7
  11. James, G. A., D. R. Korber, D. F. Caldwell, and J. W. Costetton. 1995. Digital image analysis of growth and starvation responses of a surface-colonizing Acinetobacter sp. J. Bacteriol. 177: 907-915 https://doi.org/10.1128/jb.177.4.907-915.1995
  12. Jeon, C. O., S. H. Woo, and J. M. Park. 2003. Microbial communities of activated sludge performing enhanced biological phosphorus removal in a sequencing batch reactor supplied with glucose. J. Microbiol. Biotechnol. 13: 385- 393
  13. Kemner, J. M. and J. G. Zeikus. 1994. Purification and characterization of membrane-bound hydrogenase from Methanosarcina barkeri MS. Arch. Microbiol. 161: 47-54 https://doi.org/10.1007/BF00248892
  14. Knowles, R. 1982. Denitrification. Microbial Rev. 46: 43-70
  15. Kuhl, M. and B. B. Jorgensen. 1992. Microsensor measurements of sulfate reduction and sulfide oxidation in compact microbial communities of aerobic biofilms. Appl. Environ. Microbiol. 58: 1164-1174
  16. Kwon, H.-H., E. Y. Lee, K.-S. Cho, and H. W. Ryu. 2003. Benzene biodegradation using the polyurethane biofilter immobilized with Stenotrophomonas maltophilia T3-c. J. Microbiol. Biotechnol. 13: 70-76
  17. Lawrence, F. R., D. R. Korber, B. D. Hoyle, J. W. Costerton, and D. E. Caldwell. 1991. Optical sectioning of microbial biofilm. J. Bacteriol. 173: 6558-6567 https://doi.org/10.1128/jb.173.20.6558-6567.1991
  18. Lee, Y. N., J. H. Lee, H. J. Cho, E. J. Shin, J. W. Park, and J. H. Park. 1999. Characterization for Campylobacter newly isolated from swine gastric mucosa. J. Microbiol. Biotechnol. 9: 778-783
  19. Moat, A. G., J. W. Foster, and M. P. Spector. 2002. Microbial Physiology. 4th Edition, pp. 371-382. Wileyllis. John Wiley and Sons, Inc. New York, U.S.A
  20. Moller, S., A. R. Pederson, L. K. Poulsen, E. Arvin, and S. Molin. 1996. Activity and three-dimensional distribution of toluene-degrading Pseudomonas putida in a multispecies biofilm assessed by quantitative in situ hybridization and scanning confocal laser microscopy. Appl. Environ. Microbiol. 62: 4632-4640
  21. Moller, S., D. R. Korber, G. M. Wolfaardt, S. Molin, and D. E. Caldwell. 1997. Impact of nutrient composition on a degradative biofilm community. Appl. Environ. Microbiol. 63: 2432-2438
  22. Okabe, S., T. Itoh, H. Satoh, and Y. Watanabe. 1999. Analyses of spatial distributions of sulfate-reducing bacteria and their activity in aerobic wastewater biofilms. Appl. Environ. Microbiol. 65: 5107-5116
  23. Park, D. H. 1995. Reduction of benzothiophene by cytochrome C3 from Desulfovibiro desulfuricans M6 reduced by hydrogenase and by electrochemical method. Ph.D. Thesis, Korea University, Seoul, Korea
  24. Park, D. H., M. Laivenieks, M. V. Guettler, M. K. Jain, and J. G. Zeikus. 1999. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl. Enivron. Microbiol. 65: 2912- 2917
  25. Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181: 2403-2410
  26. Park, D. H. and Y. K. Park. 2001. Bioelectrochemical denitrification by Pseudomonas sp. or anaerobic bacterial consortium. J. Microbiol. Biotechnol. 11: 406-411
  27. Ramsing, N. B., M. Kuhl, and B. B. Jorgensen. 1993. Distribution of sulfate-reducing bacteria, $O_2$, and $H_2S$ in photosynthetic biofilm determined by oligonucleotide probes and microelectrodes. Appl. Environ. Microbiol. 59: 3840- 3849
  28. Rodrigue, A., N. Batia, M. Muller, O. Fayet, R. Bohm, M. A. Mandrand-Berthelot, and L. F. Wu. 1996. Involvement of the GroE chaperonins in the nickel-dependent anaerobic biosynthesis of NiFe-hydrogenases of Escherichia coli. J. Bacteriol. 178: 4453-4460 https://doi.org/10.1128/jb.178.15.4453-4460.1996
  29. Smith, R. L., M. L. Ceazan, and M. H. Brooks. 1994. Autotrophic, hydrogen-oxidizing, denitrifying bacteria in groundwater, potential agents for bioremediation of nitrate contamination. Appl. Environ. Microbiol. 60: 1949-1955
  30. Song, S. H., S. H. Yeom, S. S. Choi, and Y. J. Yoo. 2003. Effect of oxidation-reduction potential on denitrification by Ochrobactrum anthropi SY509. J. Microbiol. Biotechnol. 13: 473-476
  31. Stoodley, P., D. deBeer, and H. M. Lappin-Scott. 1977. Influence of electric fields and pH on biofilm structures as related to the bioelectric effect. Antimicrob. Agent. Chemother. 41: 1876-1879
  32. Surya, A., N. Murthy, and S. Anita. 1994. Tetracyanoquinonedimethane (TCNQ) modified electrode for NADH oxidation. Bioelectrochem. Bioenerg. 33: 71-73 https://doi.org/10.1016/0302-4598(94)87035-7
  33. Teidje, J. M. 1998. Ecology of denitrification and dissimmilatory nitrate reduction to ammonium, pp. 179-244. In Zehnder, A. J. E. (ed.), Biology of Microorganisms. John Wiley & Sons, New York, U.S.A
  34. Wofaardt, G. M., J. R. Lawrence, R. D. Robarts, S. J. Caldwell, and D. E. Caldwell. 1994. Multicellular organization in a degradative biofilm community. Appl. Environ. Microbiol. 60: 434-446
  35. Xu, K. D., P. S. Stewart, F. Xia, C. T. Huang, and G. A. Mcfeters. 1998. Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl. Environ. Microbiol. 64: 4035-4039