Styrene Degradation in a Polyurethane Biofilter Inoculated with Pseudomonas sp. IS-3

  • KIM JAISOO (Environmental Science and Engineering, Ewha Womans University) ;
  • RYU HEE WOOK (Department of Chemical and Environmental Engineering, Soongsil University) ;
  • JUNG DONG JIN (Research Institute of Biological and Environmental Technology, Biosanit Co.,) ;
  • LEE TAE HO (Research Institute of Biological and Environmental Technology, Biosanit Co.,) ;
  • CHO KYUNG-SUK (Environmental Science and Engineering, Ewha Womans University)
  • Published : 2005.12.01

Abstract

In a search for bacteria capable of degrading styrene better than previously isolated strains, bacterium IS-3 was isolated from activated sludge and found to be most closely related to Pseudomonas sp. Styrene degradation by this strain was tested in liquid cultures and polyurethane-packed biofilters. In liquid cultures, the rate of styrene degradation by this bacterium increased from 24.93 to $76.53\;{\mu}mol\;g^{-1}\;DCW\;H^{-1}$ for an initial mass range from 8.7 to $34.8{\mu}mol$. The maximum styrene elimination capacity was 580-635 $g/m^{3}\cdot$h at a space velocity (SV) of 50-200/h. The critical elimination capacities guaranteeing $95\%$ removal of the input styrene were determined to be 635, 170, and 38 $g/m^{3}\cdot$h, respectively, at SVs of 50, 100, and 200/h. Kinetic analysis revealed that the maximum styrene elimination velocity ($V_{m}$) for this biofilter was 1,000 g/m$\cdot$h, and the saturation constant ($K_{m}$) was 454 ppmv. Together, these results suggest that a polyurethane biofilter containing Pseudomonas sp. IS-3 could have potential practical applications for the effective removal of styrene gas.

Keywords

References

  1. An, Y. J., Y. H. Joo, I. Y. Hong, H. W. Ryu, and K. S. Cho. 2004. Microbial characterization of toluene-degrading denitrifying consortia obtained from terrestrial and marine ecosystems. Appl. Microbiol. Biotechnol. 65: 611-619
  2. Cho, K. S., M. Hirai, and M. Shoda. 1991. Degradation characteristics of hydrogen sulfide, methanethiol, dimethyl sulfide, and dimethyl disulfide by Thiobacillus thioparus DW44 isolated peat biofilter. J. Ferment. Bioeng. 71: 384-389 https://doi.org/10.1016/0922-338X(91)90248-F
  3. Cho, K. S. M. Hirai, and M. Shoda. 1992. Enhanced removal efficiency of malodorous gases in a pilot-scale peat biofilter inoculated with Thiobacillus thioparus DW44. J. Ferment. Bioeng. 71: 46-50
  4. Cox, H. H. J., J. H. M. Houtman, H. J. Doddema, and W. Harder. 1993. Enrichment of fungi and degradation of styrene in biofilters. Biotechnol. Lett./Sci. Technol. Lett. 15: 737-742 https://doi.org/10.1007/BF01080148
  5. Cox, H. H. J., R. E. Moerman, S. van Baalen, W. N. A. van Heiningen, H. J. Doddema, and W. Harder. 1997. Performance of a styrene-degrading biofilter containing the yeast Exophiala jeanselmei. Biotechnol. Bioeng. 53: 259-266 https://doi.org/10.1002/(SICI)1097-0290(19970205)53:3<259::AID-BIT3>3.0.CO;2-H
  6. Devinny, J. S., M. A. Deshusses, and T. S. Webster. 1999. Biofiltration for Air Pollution Control. Lewis Publishers, NY, U.S.A
  7. Elomari, M., L. Coroler, S. Verhille, D. Izard, and H. Leclerc. 1997. Pseudomonas monteilii sp. nov., isolated from clinical specimens. Int. J. Syst. Bacteriol. 47: 846-852 https://doi.org/10.1099/00207713-47-3-846
  8. Fielder, R. J. and R. Lowing. 1981. Toxicity Review 1: Styrene. Health and Safety Executive, London, U.K
  9. Howard, P. H. 1990. Handbook of Environmental Fate and Exposure for Organic Chemicals. Volumes 1-4. Lewis Publishers, Chelsea, Michigan, U.S.A
  10. Hu, H. B., Y. Q. Xu, F. Chen, X. H. Zhang, and B. K. Hur. 2005. Isolation and characterization of a new fluorescent Pseudomonas strain that produces both phenazine 1- carboxylic acid and pyoluteorin. J. Microbiol. Biotechnol. 15: 86-90
  11. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. 2002. Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene and Styrene. p. 590. Volume 82, France
  12. Ihm, S. K. 2000. Design of environmental catalysts for VOC removal. Environ. Eng. Res. 5: 213-222
  13. Jang, J. H., M. Hirai, and M. Shoda. 2004. Styrene degradation by Pseudomonas sp. SR-5 in biofilters with organic and inorganic packing materials. Appl. Microbiol. Biotechnol. in press
  14. Jorio, H., L. Bibeau, and M. Heitz. 2000. Biofiltration of air contaminated by styrene: Effect of nitrogen supply, gas flow rate, and inlet concentration. Environ. Sci. Technol. 34: 1764-1771 https://doi.org/10.1021/es990911c
  15. Lee, B. H., J. H. Lee, S. I. Ryu, and Y. J. Yoo. 2001. Predicting a breakthrough curve of a volatile organic compound (VOC) with estimation of the surface diffusion coefficient and surface pore flux ratio by modeling and column test. Environ. Eng. Res. 6: 147-153
  16. Lee. E. Y., K. S. Cho, H. D. Han, and H. W. Ryu. 2002. Hydrogen sulfide effects on ammonia removal by a biofilter seeded with earthworm casts. J. Environ. Qual. 31: 1782- 1788 https://doi.org/10.2134/jeq2002.1782
  17. Lee, E. Y., Y. S. Jun, K. S. Cho, and H. W. Ryu. 2002. Degradation characteristics of toluene, benzene, ethylbenzene, and xylene by Stenotrophomonas maltophilia T3-c. J. Air Wast. Manage. Assoc. 52: 400-406 https://doi.org/10.1080/10473289.2002.10470796
  18. Leoni L., P. Ascenzi, and A. Bocedi. 2003. Styrene-catabolism regulation in Pseudomonas fluorescens ST: Phosphorylation of StyR induces dimerization and cooperative DNA-binding. Biochem. Biophs. Res. Commun. 303: 926-931 https://doi.org/10.1016/S0006-291X(03)00450-9
  19. Lorenzo P., S. Alonso, A. Velasco, E. Diaz, J. L. Garcia, and J. Perera. 2003. Design of catabolic cassettes for styrene biodegradation. Anton. Leeuw. Int. J. G. 84: 17-24 https://doi.org/10.1023/A:1024432929423
  20. Lu, C., M. R. Lin, and J. Lin. 2001. Removal of styrene vapor form waste gases by a trickle-bed air biofilter. J. Hazard. Mater. B82: 233-245
  21. Ministry of Environment, 2004. Examination Report for Emission Amount of Chemical Materials in 2002, Korea
  22. Moe, W. M. and R. L. Irvine. 2000. Polyurethane foam medium for biofiltration. II: Operation and performance. J. Environ. Eng. 126: 826-832 https://doi.org/10.1061/(ASCE)0733-9372(2000)126:9(826)
  23. Moe, W. M. and R. L. Irvine. 2001. Polyurethane foam based biofilter media for toluene removal. Water Sci. Technol. 43: 35-42
  24. Okamoto, K., M. Izawa, and H. Yanase. 2003. Isolation and application of a styrene-degrading strain of Pseudomonas putida to biofiltration. J. Biosci. Bioeng. 95: 633-636 https://doi.org/10.1016/S1389-1723(03)80176-7
  25. O'Leary, N. D., K. E. O'Connor, and A. D. W. Dobson. 2002. Biochemistry, genetics and physiology of microbial styrene degradation. FEMS Microbiol. Rev. 26: 403-417 https://doi.org/10.1111/j.1574-6976.2002.tb00622.x
  26. Ottengraf, S. P. P. 1986. Exhaust gas purification, pp. 425- 452. In H. J. Rehm and G. Reed (eds.), Biotechnology: A Comprehensive Treatise, vol 8. VCH, Verlagsgesellschaft, Weinheim Publishers, Weinheim, Germany
  27. Reittu, A. M., A. von Wright, P. J. Martikainen, and M. L. Suihko. 1997. Bacterial degradation of styrene in waste gases using a peat filter. Appl. Microbiol. Biotechnol. 48: 738-744 https://doi.org/10.1007/s002530051126
  28. Weigner, P., J. Paca, P. Loskot, B. Koutsky, and M. Sobotka. 2001. The start-up period degrading biofilters. Folia Microbiol. 46: 211-216 https://doi.org/10.1007/BF02818535
  29. Son, H. K., B. A. Striebig, and R. W. Regan. 2004. A modified thermo-model for VOC treating biofilter. Environ. Eng. Res. 9: 288-298 https://doi.org/10.4491/eer.2004.9.6.288
  30. Weigner, P., J. Paca, P. Loskot, B. Koutsky, and M. Sobotka. 2001. The start-up period degrading biofilters. Folia Microbiol. 46: 211-216 https://doi.org/10.1007/BF02818535
  31. Zilli, M., E. Palazzi, L. Sene, A. Converti, and M. D. Borghi. 2001. Toluene and styrene removal from air in biofilters. Process Biochem. 37: 423-429 https://doi.org/10.1016/S0032-9592(01)00228-X