Simulated Moving Bed 크로마토그래피를 이용한 프럭토 올리고당의 정제

Purification of Fructooligosaccharides Using Simulated Moving Bed Chromatography

  • 오난숙 (인하대학교 생물공학과) ;
  • 이종호 (인하대학교 초정밀생물분리기술연구센터) ;
  • 구윤모 (인하대학교 생물공학과)
  • Oh, Nan-Suk (Department of Biological Engineering, Inha University) ;
  • Lee, Chong-Ho (ERC for Advanced Bioseparation Technology, Inha University) ;
  • Koo, Yoon-Mo (Department of Biological Engineering, Inha University)
  • 투고 : 2005.09.30
  • 심사 : 2005.11.24
  • 발행 : 2005.12.31

초록

SMB 크로마토그래피 기술을 포도당, 수크로즈, 프럭토 올리고당(케스토즈, 니스토즈)의 혼합물 중 프럭토 올리고당을 고순도로 얻기 위해 사용하였다. SMB 운전 조건은 일반적으로 실험 중 칼럼 내에서 발생하는 반응을 고려하지 않는 삼각형 이론(triangle theory)이나 정지파(standing wave) 디자인을 따른다. 그러나 칼럼 내에서 반응은 실험 결과에 크게 영향을 미칠 수 있다. 프럭토 올리고당은 운전 중 가수분해되어 포도당과 과당으로 분해된다. 반응을 바로잡기 위해 가수분해 후 정상상태에서 각 성분의 농도를 역 추정하였고 이를 모사에 적용하였다. 수크로즈를 제외한 포도당과 케스토즈, 니스토즈의 농도 곡선은 거의 일치했으나 수크로즈는 중간물질이며 가수분해 속도가 프럭토 올리고당에 비해 느리기 때문에 농축되어 모사 결과와 일치하지 않았다. 프럭토 올리고당은 산성이고 높은 온도 조건에서 더 쉽게 가수분해가 일어난다. 분리수지에 전 처리를 하여 pH를 조정해 더 낮은 온도에서 실험을 수행하면 가수분해 정도를 감소시킬 수 있다.

The SMB chromatography is used to obtain high purification of fructooligosaccharides (FOS), the mixture of kestose and nystose. SMB operation condition is usually determined by triangle theory or standing wave design when reactions do not occur within columns during experiment. Some of the reactions in columns may considerably affect experimental results. FOS can be hydrolyzed and converted into glucose and fructose during operation. To include the effect of reaction, the concentrations of each component at steady state after hydrolysis were used in simulation. The obtained simulation values are well matched with experimental results except sucrose. For sucrose, the experimental results were different from expected one due to the existence of an intermediate component. FOS is easily hydrolyzed and converted into glucose and fructose in more acidic condition and at higher temperature. Hydrolysis reaction can be prevented by the pretreatment of separation resin with NaOH as well as operation under lower temperature.

키워드

참고문헌

  1. Yun, J. W. and Song, S. K.,'The Production of High-Content Fructooligo Saccharides from Sucrose by the Mixed-Enzyme System of Fructosyltransferase and Glucose Oxidase,' Biotechnol. Lett., 15(7), 573-576(1993) https://doi.org/10.1007/BF00138542
  2. Yun, J. W., 'Fructooligosaccharides-Occurrence, Preparation, and Application,' Enzyme Microb. Technol., 19(2), 107-117(1996) https://doi.org/10.1016/0141-0229(95)00188-3
  3. Hidaka, H., Hirayama, M. and Sumi, N. A., 'Fructooligosaccharide Producing Enzyme from Aspergillus Niger ATCC 20611,' Agric. Biol. Chem., 52(7), 1181-1187(1988)
  4. Lewis, D., 'Nomenclature and Diagrammatic Representation of Oligomeric Fructans a Paper for Discussion,' New Phytol., 124(5), 583-594(1993) https://doi.org/10.1111/j.1469-8137.1993.tb03848.x
  5. Hogarth, A. J., Hunter, D. E., Jacobs, W. A., Garleb, K. A. and Wolf, B. W., 'Ion Chromatographic Determination of Three Fructooligosaccharide Oligomers in Prepared and Preserved Foods,' J. Agric. Food Chem., 48(11), 5326-5330(2000) https://doi.org/10.1021/jf000111h
  6. L'homme, C., Arbelot, M., Puigserver, A. and Biagini, A., 'Kinetics of Hydrolysis of Fructooligosaccharides in Mineral-Buffered Aqueous Solutions: Influence of pH and Temperature,' J. Agric. Food Chem., 51(1), 224-228(2003) https://doi.org/10.1021/jf0204699
  7. Broughton, D. B., 'Molex Case History of a Process,' Chem. Eng. Prog., 64(1), 60-72(1968)
  8. Broughton, D. B., Neuzil, R. W., Pharis, J. M. and Brearley, C. S., 'The Parex Process for Recovering Paraxylene,' Chem. Eng. Prog., 66(1), 70-82(1970)
  9. Ching, C. B., Chu, K. H., Hidajat, K. and Ruthven, D. M., 'Experimental Study of a Simulated Counter-Current Adsorption System- VII: Effects of Non-Linear and Interacting Isotherms,' Chem. Eng. Sci., 48(7), 1343-1351(1993) https://doi.org/10.1016/0009-2509(93)81014-M
  10. Pais, L. S., Loureiro, J. M. and Rodrigues, A. E., 'Separation of 1,1'-bi-2-Naphthol Enantiomers by Continuous Chromatography in Simulated Moving Bed,' Chem. Eng. Sci., 52(2), 245-257(1997) https://doi.org/10.1016/S0009-2509(96)00398-3
  11. Zoltán, M., Melinda, N., Antal, A., László, H., János, A., István, P. and Tibor, S., 'Separation of Amino Acids with Simulated Moving Bed Chromatography,' Journal of Chromatography A, 1075(1-2), 77-86(2005) https://doi.org/10.1016/j.chroma.2005.03.123
  12. Xie, Y., Wu, D., Ma, Z. and Wang, N.-H. L., 'Extended Standng Wave Design Method for Simulated Moving Bed Chromatography: Linear Systems,' Ind. Eng. Chem. Res., 39(6), 1993-2005(2000) https://doi.org/10.1021/ie9905052
  13. Hashimoto, K., Adachi, S. and Shirai, Y., 'Continuous Desalting of Proteins with a Simulated Moving-bed Adsorber,' Agric. Biol. Chem., 52(11), 2161-2171(1998)
  14. Storti, G., Mazzotti, M., Morbidelli, M. and Carra, S., 'Robust Design of Binary Counter Current Adsorption Separation Processes,' AIChE J., 39(3), 471-485(1993) https://doi.org/10.1002/aic.690390310
  15. Ma, Z. and Wang, N.-H. L., 'Standing Wave Analysis of SMB Chromatography: Linear Systems,' AIChE J., 43(10), 2488-2509 (1997) https://doi.org/10.1002/aic.690431012
  16. Gentilini, A., Migliorini, C., Mazzotti, M. and Morbidelli, M., 'Optimal Operation of Simulated Moving Bed Units for Non Linear Chromatographic Separations II. Bi-Langmuir Isotherm,' J. Chromatogr. A., 805(1-2), 37-44(1998) https://doi.org/10.1016/S0021-9673(98)00012-0
  17. Mazzotti, M., Storti, G. and Morbidelli, M., 'Operation of Simulated Moving Bed Units for Nonlinear Chromatographic Separations,' J. Chromatogr. A., 769(1), 3-24(1997) https://doi.org/10.1016/S0021-9673(97)00048-4
  18. Minceva, M., Pais, L. S. and Rodrigues, A. E., 'Cyclic Steady State of Simulated Moving Bed Processes for Enantiomers Separation,' Chem. Eng. Proc., 42(2), 93-104(2003)
  19. Hashimoto, K., Adachi, S., Noujima, H. and Maruyama, A., 'Models for Separation of Glucose-Fructose Mixture Using a Simulated Moving Bed Adsorber,' J. Chem. Engng. Japan., 16(5), 400-423(1983) https://doi.org/10.1252/jcej.16.400
  20. Wankat, P. C. (Ed), Rate-Controlled Separations, Glasgow, Elservier Applied Science, London and New York(1994)
  21. Kim, Y. D., Lee, J. K. and Cho, Y. S., 'Application of Simulated Moving Bed Chromatography for the Separation Between 2,6- and 2,7-Dimethylnaphthalene,' Korean J. Chem. Eng., 18(6), 971-976 (2001)
  22. Han, S. K., Yeo, M. S., Park, T. J., Koo, Y. M. and Row, K. H., 'Chiral Separation of Bupivacaine by Simulated Moving Bed (2) Determination of Optimum Condition by Simulation,' HWAHAK KONGHAK, 41(6), 728-735(2003)
  23. Park, B. J., Lee, C. H. and Koo, Y. M., 'Development of Novel Protein Refolding Using Simulated Moving Bed Chromatography,' Korean J. Chem. Eng., 22(3), 425-432(2005) https://doi.org/10.1007/BF02719422