Preparation and Release Behaviors of Poly(ε-caprolactone) Microcapsules Containing SiO2 and Nifedipine

실리카와 니페디핀을 함유한 Poly(ε-caprolactone) 마이크로캡슐의 제조와 방출 거동

  • Park, Soo-Jin (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Lee, Yun-Mok (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Han, Mijeong (Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • 박수진 (한국화학연구원 화학소재연구부) ;
  • 이윤목 (한국화학연구원 화학소재연구부) ;
  • 한미정 (한국화학연구원 화학소재연구부)
  • Received : 2005.05.11
  • Accepted : 2005.06.27
  • Published : 2005.08.10

Abstract

In this study, biodegradable poly(${\varepsilon}$-caprolactone) (PCL) microcapsules containing chemically treated $SiO_2$ and nifedipine were prepared by oil-in-water (O/W) emulsion solvent evaporation method. The microcapsules containing drugs were confirmed using FT-IR spectra. The morphologies of the microcapsules were observed with scanning electron microscope (SEM). The nifedipine's release behaviors from the microcapsules were also examined with UV/vis spectroscopy. As a result, the inclusion of nifedipine into the microcapsules was determined by the presence of nifedipine's specific peak, i.e., C=O stretch vibration at $1682cm^{-1}$. The average particle size of the microcapsules decreased with increasing stirring rate. The nifedipine adsorption capacity and release rate of treated $SiO_2$ that was treated with basic solution decreased because with the increased basicity it lowered the specific surface area of $SiO_2$ and promoted stronger acid-base interactions between $SiO_2$ and nifedipine.

본 실험에서는 화학적으로 표면처리된 실리카와 니페디핀을 함유하는 PCL 마이크로캡슐을 O/W 액중건조법을 이용하여 제조하였다. 마이크로캡슐에 대한 심물질의 함입은 FT-IR을 사용하여 측정하였고, 마이크로캡슐의 표면 형태는 주사전자현미경을 통하여 관찰하였다. 또한, 마이크로캡슐의 니페디핀 방출 거동은 UV/Vis. 흡광광도법으로 흡광도를 측정하여 살펴보았다. 실험 결과, 니페디핀의 C=O 결합에 의한 $1682cm^{-1}$ 신축진동 피크가 마이크로 캡슐에서 나타나는 것을 확인할 수 있었다. 마이크로캡슐의 평균 입자크기는 교반 속도가 증가함에 따라 감소하였다. 그리고 실리카를 염기성 용액으로 처리한 경우 니페디핀의 흡착량과 방출 속도가 감소하였음을 확인할 수 있었으며, 이는 표면 염기도의 증가로 인해 실리카 표면의 비표면적이 감소되고 산-염기 상호작용이 증가되었기 때문으로 판단된다.

Keywords

References

  1. C. O. Sullivan and C. Birkinshaw, Biomaterials, 25, 4375 (2004) https://doi.org/10.1016/j.biomaterials.2003.11.001
  2. S. J. Park and S. H. Kim, J. Colloid interface Sci., 271, 336 (2004) https://doi.org/10.1016/j.jcis.2003.08.067
  3. K. Nakagawa, S. Iwamoto, M. Nakajima, A. Shono, and K. Satoh, J. Colloid Inteiface Sci., 278, 198 (2004)
  4. J. Lazko, Y. Popineau, and J. Legrand, Colloids Surf B: Biointerlaces, 37, 1 (2004)
  5. M. J. B. Preto, M. A. Campanero, K. Besseghir, F. Heimgatner, and B. Gander, J. Control. Release, 96, 437 (2004) https://doi.org/10.1016/j.jconrel.2004.02.015
  6. J. Jaiswal, S. K. Gupta, and J. Kreuter, J. Control. Release, 96, 169 (2004) https://doi.org/10.1016/j.jconrel.2004.01.017
  7. S. J. Park, Y. S. Shin, and J. R. Lee, J. Colloid Tnterface Sci., 241, 502 (2001) https://doi.org/10.1006/jcis.2001.7740
  8. M. L. Bruschi, M. L. C. Cardoso, M. B. Lucchesi, and M. P. D. Gremio, Int. J. Pharm., 264, 45 (2003) https://doi.org/10.1016/S0378-5173(03)00386-7
  9. P. Giunchedi, J. Genta, B. Conti, R. A. A. Muzzarelli, and U. Conte, Biomaterials, 19, 157 (1998) https://doi.org/10.1016/S0142-9612(97)00181-6
  10. R. Y. Cheung, Y. Ying, A. M. Rauth, N. Marcon, and X. Y. Wu, Biomaterials, 26, 5375 (2005) https://doi.org/10.1016/j.biomaterials.2005.01.050
  11. T. Sawada, H. Kondo, H. Nakashima, K. Sako, and M. Hayashi, Int. J. Pharm., 280, 103 (2004) https://doi.org/10.1016/j.ijpharm.2004.05.004
  12. E. Russo, A. Constanti, G. Ferreri, R. Citraro, and G. D. Sarro, Neuropharmacology, 46, 865 (2004) https://doi.org/10.1016/j.neuropharm.2003.11.028
  13. Q. R. Cao, H. G. Choi, D. C. Kim, and B. J. Lee, Int. J. Pharm., 274, 107 (2004) https://doi.org/10.1016/j.ijpharm.2004.01.020
  14. L. Liu, J. Ku, G. S. Khang, B. Lee, J. M. Rhee, and H. B. Lee, J. Control. Release, 68, 145 (2000) https://doi.org/10.1016/S0168-3659(00)00243-1
  15. A. Dalpiaz, A. Scatturin, B. Pavan, C. Biondi, M. A. Vandelli, and F. Forni, Int. J. Pharm., 242, 115 (2002) https://doi.org/10.1016/S0378-5173(02)00179-5
  16. H. P. Boehm, Carbon, 40, 145 (2002) https://doi.org/10.1016/S0008-6223(01)00165-8
  17. S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Chem. Soc., 60, 309 (1938) https://doi.org/10.1021/ja01269a023
  18. S. J. Park, B. J. Park, and S. K. Ryu, Carbon, 37, 1223 (1999) https://doi.org/10.1016/S0008-6223(98)00318-2
  19. S. J. Park and J. B. Donnet, J. Colloid interface Sei., 200, 46 ( 1998)
  20. R. Teraoka, M. Otsuka, and Y. Matsuda, Int. J. Pharm., 184, 35 (1999) https://doi.org/10.1016/S0378-5173(99)00089-7
  21. K. S. Soppirnath and T. M. Aminabhavi, Eur. J. Pharm. Biopharm., 53, 87 (2002)
  22. M. Guyot and F. Fawaz, into J. Pharm., 175, 61 (1998)
  23. S. R. Vippagunta, K. A. Maul, S. Tallavajhala, and D. J. W. Grant, Int. J. Pharm., 236, 111 (2002) https://doi.org/10.1016/S0378-5173(02)00019-4
  24. S. A. Agnihotri and T. M. Aminabhavi, J. Control. Release, 96, 245 (2004) https://doi.org/10.1016/j.jconrel.2004.01.025
  25. J. Varshosaz and Z. Dehghan, Eur. J. Pharm. Biopharm., 54, 135 (2002) https://doi.org/10.1016/S0939-6411(02)00078-4