Determination of chlorophenols from the industrial wastewater by GC/MS

GC/MS를 이용한 산업폐수중의 염화페놀류 분석

  • Received : 2005.02.24
  • Accepted : 2005.08.10
  • Published : 2005.08.25

Abstract

The most common five chlorophenols (4-chloro-3-methylphenol, 2,4,5-trichlorophenol, 2,4,6-trichlorophenol, 2,3,4,6-tetrachlorophenol, pentachlorophenol) were determined from the industrial wastewater by GC/MS. The samples were collected from the petrochemical company, textile company and leather making company. The developed analytical method was modified by USEPA Method 3510. The samples were extracted with dichloromethane under pH 2 and pH 5-6, and determined by the GC/MS with SIM mode. There were good linearities (above $R^2=0.9943$) on e ranges of the 0.1 ng/mL~10 ng/mL and 0.5 ng/mL~10 ng/mL, and the limit of detection were between 0.1 ng/mL and 0.5 ng/mL. The absolute recoveries were measured at the concentration of 1, 5, and 10 ng/mL, and the recovery was 71.6~98.9% except for PCP. The relative standard deviation (RSD) was 1.2~14.3% and it gave a good reproducibility for the assay. The bias, which shows the accuracy, was a good although it was a little high values (11.3~22.1%) at the low concentration (1 ng/mL).

산업폐수 중 염화폐놀류 5종 (4-chloro-3-methylphenol, 2,4,5-trichlorophenol, 2,4,6-trichlorophenol, 2,3,4,6-tetrachlorophenol, pentachlorophenol)의 잔류량을 GC/MS를 사용하여 측정하였다. 산업폐수 시료는 석유화학, 섬유염색, 가죽피혁 분야의 공장에서 방류되는 원수 및 방류수를 채취하여 분석하였다. 본 논문에서는 USEPA 3510 방법을 변형하여 새로운 방법을 확립하였다. 각 시료들은 pH 2와 5~6조건에서 디클로로메탄을 사용하여 액체-액체 추출법으로 추출한 다음 GC/MS에 주입하여 SIM방법으로 분석하였다. 그 결과 0.1 ng/mL~10.0 ng/mL과 0.5 ng/mL~10.0 ng/mL 정량구간내에서 $R^2=0.9943$ 이상의 좋은 직선성을 나타내었으며, 검출한계는 0.1 ng/mL~0.5 ng/mL이었다. 실제 시료측정에 앞서서 1, 5, 10 ng/mL 농도에서 회수율을 측정하였는데, PCP의 경우를 제외하고는 71.6-98.9%의 양호한 절대회수율을 나타내었다. 상대표준편차(RSD)는 1.2~14.3% 범위의 좋은 재현성을 나타내었고, 정밀도를 나타내는 bias는 낮은 농도(1 ng/mL)에서 약간 높은 값(11.3~22.l%)을 나타내었지만 그 이상의 농도에서는 좋은 정밀도를 나타내었다.

Keywords

References

  1. J. Jensen, Rev. Environ. Contam. Toxicol., 146, 25 (1996)
  2. US Environmental Protection Agency, Environment Monitoring and Support Laboratory, Cincinnati, OH, 1977
  3. M.-R. Lee, Y.-C. Yeh, W-S. Hsiang and B.-H. Hwang, J. Chrornatogr. A, 806, 317(1998)
  4. R. Baciocci, M. Attina, G Lomardi and M. R. Boni, J. Chrornatogr. A, 911, 135(2001) https://doi.org/10.1016/S0021-9673(00)01188-2
  5. M. Llompart, B. Blanco and R. Cela, J. Microcol. Sep., 12, 25(2000)
  6. L. Wennrich, P. Popp and M. Moder, Anal. Chem., 72, 546(2000) https://doi.org/10.1021/ac990463r
  7. O. Jauregui, E. Moyano and M. T. Galceran, J. Chromatogr. A, 823, 241 (1988) https://doi.org/10.1016/S0021-9673(98)00587-1
  8. A. Buhr, C. Genning and T. Salthammer, Fresenius' J. Anal. Chem., 367, 73(2000) https://doi.org/10.1007/s002160051601
  9. V. Lopez-Avila, R. Young and N. Teplitsky, J. Assoc. Off. Anal. Chem., 79, 142(1996)
  10. F. J. Santos, O. Jauregui, F. J. Pinto, M. T. Galceran, J. Chrornatogr. A, 823, 249(1998)
  11. M. N. Sarrion, F. J. Santos, E. Moyano and M. T. Galceran, Rapid Commun. Mass Spectrom., 17, 39-49 (2003) https://doi.org/10.1002/rcm.868
  12. F. Lafont, M. A. Aramendia, I. Garcia, V. Borau, C. Jimenez, J. M. Marinas and F. J. Urbano, Rapid Commun. Mass Spectrom., 13, 562-567 (2003) https://doi.org/10.1002/(SICI)1097-0231(19990415)13:7<562::AID-RCM524>3.0.CO;2-3
  13. K. R. Rogers, J. Y. Becker, J. Wang and F. Lu, Field Analytical Chemistry and Techcnology, 3, 161-169 (1999) https://doi.org/10.1002/(SICI)1520-6521(1999)3:3<161::AID-FACT3>3.0.CO;2-X
  14. M. Czaplicka, J. Sep. Sci., 26, 1067-1071(2003) https://doi.org/10.1002/jssc.200301453
  15. USEPA (U.S. Environmental Protection Agency). METHOD 3510C SEPARATORY FUNNEL LIQUID-LIQUID EXTRACTION 1.0 SCOPE AND APPLICATION 1.1, 1996