Preparation of Porous Graphite Using Magadiite Template

Magadiite 주형을 이용한 다공성 흑연의 합성

  • Choi, Seok-Hyon (Applied Chemistry & Engineering Division, Korea Research Institute of Chemical Technology) ;
  • Jeong, Soon-Yong (Applied Chemistry & Engineering Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Jin-Young (Department of Chemical Engineering, Yosu National University) ;
  • Kwon, Oh-Yun (Department of Chemical Engineering, Yosu National University)
  • 최석현 (한국화학연구원 응용화학연구부) ;
  • 정순용 (한국화학연구원 응용화학연구부) ;
  • 김진영 (여수대학교 화학공학과) ;
  • 권오윤 (여수대학교 화학공학과)
  • Received : 2005.04.14
  • Accepted : 2005.06.03
  • Published : 2005.08.10

Abstract

Porous graphite was prepared by elimination of the template after pyrolysis of PFO (pyrolized fuel oil) with catalyst Cobalt(II)-ethylhexanoate in interlayer space of magadiite template. Pyrolysis was conducted for 3~24 h at $900{\sim}1100^{\circ}C$. Graphite was well crystallized with increased pyrolysis time and temperature. Specific surface area was $261{\sim}400m^2/g$ depending upon mixing ratios, pyrolysis temperature, and pyrolysis time.

Magadiite 주형에 PFO (pyrolized fuel oil)와 Cobalt(II)2-ethylhexanoate 촉매를 함께 층간 삽입, $900{\sim}1100^{\circ}C$에서 3~24 h 동안 열분해하여 층간에 흑연 박막을 형성하고 magadiite 주형을 제거함으로서 다공성 흑연을 합성하였다. 소성시간이 길어질수록, 소성온도가 높을수록 흑연의 결정화도가 향상되었다. 비표면적은 PFO의 혼합비율, 소성시간, 소성온도에 따라 $261{\sim}400m^2/g$의 크게 다른 값을 나타내었다.

Keywords

References

  1. H. M. Cheng, Q. H. Yang, and C. Liu, Carbon, 39, 1447 (2001) https://doi.org/10.1016/S0008-6223(00)00306-7
  2. E. Poirier, R. Chahine, P. Benard, D. Cossement, L. Lafi, E. Melancon, T. K. Bose, and S. Desilets, Appl. Phys. A., 78, 961 (2004) https://doi.org/10.1007/s00339-003-2415-y
  3. J. Lee, S. Han, and T. Hyeon, J. Korean ind. Eng Chem., 15, 483 (2004)
  4. M. Tnagaki, K. Kaneko, and T. Nishizawa, Carbon, 42, 1401 (2004) https://doi.org/10.1016/j.carbon.2004.02.032
  5. S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, and R. Ryoo, Nature, 412, 169 (2001) https://doi.org/10.1038/35084046
  6. G. G. Park, R. H. Yang, Y. G. Yoon, W. Y. Lee, and C. S. Kim, Int. J. Hydrogen Energy, 28, 645 (2003) https://doi.org/10.1016/S0360-3199(02)00140-4
  7. N. M. Rodriguez, A. Chambers, and R. Terry K. Baker, Langmuir, 11, 3862 (1995) https://doi.org/10.1021/la00010a042
  8. S. Han, Y. Yun, K. W. Park, Y. E. Sung, and T. Hyeon, Adv. Mater, 15, 1922 (2003) https://doi.org/10.1002/adma.200305697
  9. O. Y. Kwon and K. W. Park, Bull. Korean Chem. Soc, 24, 1561 (2003) https://doi.org/10.5012/bkcs.2003.24.11.1561
  10. E. J. Jeong, S. Y. Jeong, M. W. Han, and O. Y. Kwon, Bull. Korean Chem. Soc., 14, 927 (2003)
  11. E. J. Jeong, S. Y. Jeong, and O. Y. Kwon, Bull. Korean Chem. Soc., 14, 973 (2003)
  12. G. G. Park, T. H. Yang, Y. G. Yoon, W. Y. Lee, and C. S. Kim, Int. J. Hydrogen Energy, 28, 645 (2003) https://doi.org/10.1016/S0360-3199(02)00140-4
  13. O. Y. Kwon and K. W. Park, Bull. Korean Chem. Soc., 25, 25 (2004) https://doi.org/10.5012/bkcs.2004.25.1.025
  14. E. J. Jeong, S. Y. Jeong, and O. Y. Kwon, J. Korean. Ind Eng. Chem., 14, 973 (2003)