무기물 재료를 이용한 전기유변유체

Inorganic Materials Based Electrorheological Fluids

  • 조민성 (인하대학교 고분자공학과) ;
  • 성준희 (인하대학교 고분자공학과) ;
  • 최형진 (인하대학교 고분자공학과)
  • Cho, Min Seong (Department of Polymer Science and Engineering, Inha University) ;
  • Sung, Jun Hee (Department of Polymer Science and Engineering, Inha University) ;
  • Choi, Hyoung Jin (Department of Polymer Science and Engineering, Inha University)
  • 투고 : 2005.01.24
  • 발행 : 2005.02.10

초록

일반적으로 큰 유전상수 또는 높은 전기전도도를 갖는 입자들을 점도가 낮은 절연유체에 분산시킨 전기유변유체는 외부 전기장하에서 급격하고 또한 가역적으로 변화를 한다. 현재까지 알려진 여러 종류의 전기응답성 물질들 중에서 본 총설에서는 zeolite, MCM-41/polyaniline 복합체 및 SBA-15/polyaniline 복합체 등에 중점을 두어 이러한 무기재료를 이용한 전기유변유체의 합성 및 그들의 전기유변유체적 특성을 다룬다.

Electrorheological (ER) fluids, typically composed of particles having higher dielectric constant or electric conductivity than that of suspending fluids with a low viscosity, undergo dramatic, reversible changes when exposed to an external electric field. Among various electroactive materials, we put our efforts on inorganic materials including zeolite, MCM-41, MCM-41/polyaniline composite and SBA-15/polyaniline composites. Their preparation and ER characteristics are introduced.

키워드

참고문헌

  1. R. Tao and Q . Jing, Phys. Rev. Lett., 73, 205 (1994) https://doi.org/10.1103/PhysRevLett.73.205
  2. B. C. Xu and K. C. Hass, J. Chem. Phy., 98, 2258 (1993) https://doi.org/10.1063/1.464206
  3. R. Tao and J. M. Sun, Phys. Rev. Lett., 67, 398 (1991) https://doi.org/10.1103/PhysRevLett.67.398
  4. T. Miyamoto and M. Ota, Appl. Phys. Lett., 64, 1165 (1994) https://doi.org/10.1063/1.110870
  5. H . J. Choi, M. S. Cho, and K. To, Physica A, 254, 279 (1998)
  6. M. S. Cho, H. J. Choi, and K. To. Macromol. Rapid Commun., 19, 271 (1998)
  7. J. W. Kim, M. H. Noh, H. J. Choi, D. C. Lee, and M. S. Jhon, Polymer, 41, 1229 (2000) https://doi.org/10.1016/S0032-3861(99)00466-8
  8. B. H. Kim, J. H . Jung, J. W. Kim, H. J. Choi, D. C. Lee, and J. Joo, Synth. Met., 117, 115 (2001) https://doi.org/10.1016/S0379-6779(00)00549-X
  9. Y. Chen, A. F. Sprecher, and H. Conrad, J. Appl. Phys., 70, 6796 (1991) https://doi.org/10.1063/1.349855
  10. H. J. Lee, B. D. Chin, S. M. Yang, and O. O. Park, J. Colloid Interf. Sci., 206, 424 (1998) https://doi.org/10.1006/jcis.1998.5661
  11. H. J. Choi, M. S. Cho, and K. To, Physica A, 254, 272 (1998) https://doi.org/10.1016/S0378-4371(98)00005-3
  12. J. B. Jun, J. W. Kim, and K. D. suh, Macromol. Chem. Phys., 203, 1011 (2002) https://doi.org/10.1002/1521-3935(20020401)203:7<1011::AID-MACP1011>3.0.CO;2-E
  13. C. J. Gow and C. F. Zukoski, J. Colloid Interf. Sci., 136, 175 (1990) https://doi.org/10.1016/0021-9797(90)90088-6
  14. J. W. Goodwin, G. M. Markham, and B. Vincent, J. Phys. Chem. B, 101, 1961 (1997) https://doi.org/10.1021/jp962267j
  15. Y. D. Kim and I. C. Song, J. Mater. Sci., 37, 5051 (2002) https://doi.org/10.1023/A:1021091700296
  16. J. Plocharski, H. Drabik, H. Wycislik, and T. Ciach, Synth. Met., 88, 139 (1997) https://doi.org/10.1016/S0379-6779(97)03848-4
  17. J. I. Shon, J. H. Sung, H. J. Choi, and M. S. Jhon, J. Appl. Polym. Sci., 84, 2397 (2002) https://doi.org/10.1002/app.10506
  18. M. S. Cho and H. J. Choi, Korea-Australia Rheol. J., 12, 151 (2000)
  19. J. I. Sohn, M. S. Cho, H. J. Choi, and M. S. Jhon, Macromol. Chem. Phys., 203, 1135 (2002) https://doi.org/10.1002/1521-3935(20020501)203:8<1135::AID-MACP1135>3.0.CO;2-F
  20. H. Block, J. P. Kelly, A. Qin, and T. Waston, Langmuir, 6, 6 (1990) https://doi.org/10.1021/la00091a002
  21. J. Trlica, P. Sha, O. Quadrat, and J. Stejskal, Physica A, 283, 337 (2000) https://doi.org/10.1016/S0378-4371(00)00113-8
  22. D. Chotpattananont, A. Sirivat, and A. M. Jamieson, Colloid Polym. Sci., 282, 357 (2004) https://doi.org/10.1007/s00396-003-0945-7
  23. H. J. Choi, J. W. Kim, and K. To, Polymer, 40, 2163 (1999) https://doi.org/10.1016/S0032-3861(98)00418-2
  24. J. H. Sung, J. W. Kim, H. J. Choi, and S. B. Choi, Synth. Met. 135, 19 (2003) https://doi.org/10.1016/S0379-6779(02)00540-4
  25. H. J. Choi, J. W. Kim, M. S. Suh, M. J. Shin, and K. To, Int. J. Mod. Phys. B, 15, 649 (2001) https://doi.org/10.1142/S0217979201005118
  26. H. J. Choi, M. S. Cho, J. W. Kim, R. M. Webber, and M. S. Jhon, Int. J. Mod. Phys. B, 15, 988 (2001) https://doi.org/10.1142/S0217979201005519
  27. J. W. Kim, W. H. Jang, H. J. Choi, and J. Joo, Synth. Met., 119, 173 (2001) https://doi.org/10.1016/S0379-6779(00)01101-2
  28. J. Y. Whang, K. Lee, I. Chin, A. Guiseppi-Elie, and H. J. Choi, Mol. Cryst. Liq. Cryst., 407, 7 (2003) https://doi.org/10.1080/744819007
  29. M. S. Cho, S. Y. Park, J. Y. Whang, and H. J. Choi, Mater. Sci. Eng. C, 24, 15 (2004) https://doi.org/10.1016/j.msec.2003.09.003
  30. Y. H. Lee, C. A. Kim, W. H. Jang, H. J. Choi, and M. S. Jhon, Polymer, 42, 8277 (2001) https://doi.org/10.1016/S0032-3861(01)00342-1
  31. Y. H. Cho, H. J. Choi, M. S. Cho, and M. S. Jhon, Colloid Polym. Sci., 280, 1062 (2002) https://doi.org/10.1007/s00396-002-0698-8
  32. M. S. Cho, Y. H. Cho, H. J. Choi, and M. S. Jhon, Langmuir, 19, 5875 (2003) https://doi.org/10.1021/la026969d
  33. J. W. Kim, C. H. CHo, F. Liu, H. J. Choi, and J. Joo, Synth. Met. 135, 17 (2003) https://doi.org/10.1016/S0379-6779(02)00540-4
  34. J. W. Kim, S. G. Kim, H. J. Choi, M. S. Suh, M. J. Shin, and M. S. Jhon, Int. J. Mod. Phys. B, 15, 657 (2001) https://doi.org/10.1142/S021797920100512X
  35. M. S. Cho, H. J. Choi, and W. S. Ahn, Langmuir, 20, 202 (2004) https://doi.org/10.1021/la035051z
  36. J. W. Kim, F. Liu, H. J. Choi, S. H. Hong, and J. Joo, Polymer, 44, 289 (2003) https://doi.org/10.1016/S0032-3861(02)00749-8
  37. D. P. Park, J. H. Sung, S. T. Lim, H. J. Choi, and M. S. Jhon, J. Mater. Sci. Lett., 22, 1299 (2003) https://doi.org/10.1023/A:1025482807726
  38. I. S. Sim, J. W. Kim, H. J. Choi, C. A. Kim, and M. S. Jhon, Chem. Mater., 13, 1243 (2001) https://doi.org/10.1021/cm000677l
  39. J. I. Sohn, J. H. Sung, I. S. Shim, H. J. Choi, and M. S. Jhon, J. Mater. Sci., 37, 4057 (2002) https://doi.org/10.1023/A:1020067215154
  40. R. S. Kohlman, J. Joo, Y. G. Min, A. G. MacDiarmid, and A. J. Epstein, Phys. Rev. Lett., 77, 2766 (1996) https://doi.org/10.1103/PhysRevLett.77.996
  41. J. H. Sung, H. J. Choi, J. I. Sohn, and M. S. Jhon, Colloid Polym. Sci., 281, 1196 (2003) https://doi.org/10.1007/s00396-003-0909-y
  42. P. Atten, J. N. Foulc, and P. Gonon, Int. J. Modern Phys. B, 16, 2662 (2002) https://doi.org/10.1142/S0217979202012815
  43. H. J. Choi, M. S. Cho, K. K. Kang, and W. S. Ahn, Micropor. Mesopor. Mater., 39, 19 (2000) https://doi.org/10.1016/S1387-1811(00)00167-0
  44. M. S. Cho, H. J. Choi, K. Y. Kim, and W. S. Ahn, Macromol. Rapid Commun., 23, 713 (2002) https://doi.org/10.1002/1521-3927(20020801)23:12<713::AID-MARC713>3.0.CO;2-Y
  45. K. Moller and T. Bein, Chem. Mater., 10, 2950 (1998) https://doi.org/10.1021/cm980243e
  46. J. W. Kim, C. H. CHo, F. Liu, H. J. Choi, and J. Joo, Synth. Met. 135, 17 (2003) https://doi.org/10.1016/S0379-6779(02)00540-4
  47. H. See, H. Tamura, and M. Doi, J. Phys. D: Appl. Phys., 26, 746 (1993) https://doi.org/10.1088/0022-3727/26/5/005
  48. Y. D. Kim, S. W. Nam, and T. J. Park, J. Ind. Eng. Chem., 9, 488 (2003) https://doi.org/10.1021/ie50089a017
  49. L. C. Davis, J. Appl. Phys., 72, 1334 (1992) https://doi.org/10.1063/1.351743
  50. Y. Chen, A. F. Sprecher, and H. Conrad, J. Appl. Phys., 70, 6796 (1991) https://doi.org/10.1063/1.349855
  51. P. M. Adriani and A. P. Gast, Phys. Fluid, 31, 2757 (1988) https://doi.org/10.1063/1.866983
  52. R. A. Anderson, Langmuir, 10, 2917 (1994) https://doi.org/10.1021/la00021a013
  53. L.C. Davis, Appl. Phys. Lett., 60, 319 (1992) https://doi.org/10.1063/1.107441
  54. L. C. Davis, J. Appl. Phys., 73, 680 (1993) https://doi.org/10.1063/1.353351
  55. R. Tao and Q. Jiang, Phys. Rev. Lett., 73, 205 (1994) https://doi.org/10.1103/PhysRevLett.73.205
  56. H. H. Clarx and G. Bossis, Phys. Rev. E, 48, 2721 (1993) https://doi.org/10.1103/PhysRevE.48.2721
  57. D. J. Klingenberg, S. Van Frank, and C. F. Zukoski, J. Chem. Phys., 94, 6160 (1991) https://doi.org/10.1063/1.460402
  58. M. Parthasarathy and D. J. Klingenberg, Mater. Sci. Eng., R17, 57 (1996)
  59. X. Duan, H. Chen, Y. He, and W. Luo, J. Phys. D: Appl. Phys. B, 13, 696 (2000)
  60. H. J. Lee, B. D. Chin, S. M. Yang, and O. O. Park, J. Colloid Interf. Sci., 206, 424 (1998) https://doi.org/10.1006/jcis.1998.5661
  61. C. W. Wu and H. Conrad, Int. J. Mod Phys. B, 13, 1713 (1999) https://doi.org/10.1142/S0217979299001715
  62. B. Khusid and A. Acrivos, Phys. Rev. E, 52, 1669 (1995) https://doi.org/10.1103/PhysRevE.52.1669
  63. H. See and T. Saito, Rheol. Acta, 35, 233 (1996) https://doi.org/10.1007/BF00366910
  64. H. Conrad, Y. Chen, and A. F. Sprecher, Proc 2nd Int Conf on ER Fluids, p.252 (1989)
  65. K. Negita and Y. Ohsawa, J. Phys. II France 5, 883 (1995) https://doi.org/10.1051/jp2:1995170
  66. D. J. Klingenberg, P. Pakdel, Y. D. Kim, B. M. Belongia, and S. Kim, Ind. Eng. Chem. Res., 34, 3303 (1995) https://doi.org/10.1021/ie00037a016
  67. H. Conrad and Y. Chen, Progress in Electrorheology, eds., K. O. Havelka and F. E. Filisko, Plenum Press, p.55 (1995)
  68. M. Jordan, A. Schwendt, D. A. Hill, S. Burton, and N. Makris, J. Rheol., 41, 75 (1997) https://doi.org/10.1122/1.550854
  69. H. Conrad, Y. Chen, and A. F. Sprecher, Proc 3rd Int Conf on ER Fluids, p.195 (1991)
  70. J. M. Dealy and K. F. Wissbrun, Melt Rheology and Its Role in Plastics Processing: Theory and Applications, Van Nostrand Reinhold, New York, p.18 (1990)
  71. M. S. Cho, H. J. Choi, I. J. Chin, and W. S. Ahn, Micropor. Mesopor. Mat., 32, 233 (1999) https://doi.org/10.1016/S1387-1811(99)00109-2
  72. R. Ryoo, C. H. Ko, and R. F. Howe, Chem. Mater. 9, 1607 (1997) https://doi.org/10.1021/cm9700110
  73. C. G. Wu and T. Bein, Science, 264, 1757 (1994) https://doi.org/10.1126/science.264.5166.1757
  74. M. S. Cho, H. J. Choi, K. Y. Kim, and W. S. Ahn, Macromol. Rapid Commun., 23, 713 (2002) https://doi.org/10.1002/1521-3927(20020801)23:12<713::AID-MARC713>3.0.CO;2-Y