Serum Insulin, Insulin-like Growth Factor-I and Insulin-like Growth Factor Binding Protein-3 Levels in Obese Adolescents

비만 청소년에서 Insulin, Insulin-like Growth Factor-I, Insulin-like Growth Factor Binding Protein-3에 대한 연구

  • Kwon, Jung Hyun (Department of Pediatrics, College of Medicine, Ewha Womans University) ;
  • Kim, Hyun Jin (Department of Pediatrics, College of Medicine, Ewha Womans University) ;
  • Hong, Young Mi (Department of Pediatrics, College of Medicine, Ewha Womans University)
  • 권정현 (이화여자대학교 의과대학 소아과학교실) ;
  • 김현진 (이화여자대학교 의과대학 소아과학교실) ;
  • 홍영미 (이화여자대학교 의과대학 소아과학교실)
  • Received : 2005.06.22
  • Accepted : 2005.08.08
  • Published : 2005.11.15

Abstract

Purpose : Childhood Obesity is increasing throughout the world, and it is known to incur many diseases especially in later life such as diabetes and cardiovascular disorders. The purpose of this study was to investigate the association between obesity and insulin, insulin-like growth factor-I (IGF-I), insulin-like growth factor binding protein-3(IGFBP-3) and know if these factors are useful in predicting cardiovascular diseases. Methods : The study group consisted of 64 moderate and severe obese adolescents and the controls were normal adolescents of the same age. body mass index(BMI) was calculated by height and weight; systolic and diastolic blood pressure was measured at resting state. After 10-hour fasting period, blood cholesterol, triglyceride, high density lipoprotein(HDL) cholesterol, low density lipoprotein(LDL) cholesterol, glucose, insulin, free fatty acid, IGF-I and IGFBP-3 were measured. Results : Insulin was significantly higher in the obese adolescent group than the control group(obese group $15.6{\pm}7.0{\mu}IU/mL$, P<0.01). IGF-I was also significantly higher in the obese adolescent group than the control group(obese group $498.1{\pm}122.2ng/mL$, P<0.05). In addition, IGFBP-3 was significantly higher in the obese adolescent group than the control group(obese group $3,777{\pm}4,721ng/mL$, P<0.05). Insulin showed significantly positive correlation with BMI(r=0.3944) and obesity index(r=0.34). IGFBP-3 were significantly correlated with obesity index(r=0.419), diastolic blood pressure (r=0.264) and BMI(r=0.247). Insulin resistance index significantly positive correlation with BMI(r=0.595), blood triglycerid level(r=0.515) and obesity index(r=0.469). Conclusion : Serum insulin, insulin resistance index, IGF-I and IGFBP-3 levels may be useful to predict cardiovascular diseases in adolescent obesity.

목 적 : 소아 비만은 전세계적으로 증가하고 있는 추세이며, 신체적으로나 정신적으로 장애를 일으킨다. 특히 고혈압, 관상동맥질환, 당뇨병 등의 성인병이 문제가 되고 있다. 이에 비만 청소년에서 혈중 인슐린, 인슐린저항지수, 유리 지방산, IGF-I, IGFBP-3를 측정하였고, 심혈관 질환으로 진행할 수 있는 위험인자로 유용한지 알아보기 위해 본 연구를 실시하였다. 방 법 : 64명의 중등도 이상의 비만 청소년를 대상군으로 하였고, 같은 연령의 정상 청소년 20명을 대조군으로 하였다. 신장, 체중을 이용하여 비만도와 체질량지수를 산출하였고, 안정된 상태에서 수축기, 이완기 혈압을 측정하였다. 10시간 이상 금식 후 총 콜레스테롤, 중성지방, HDL 콜레스테롤, LDL 콜레스테롤, AST, ALT, 혈당, 인슐린, 유리지방산, IGF-I, IGFBP-3를 측정하였다. 결 과 : 인슐린은 비만군에서 $15.6{\pm}7.0{\mu}IU/mL$로 정상군보다 유의하게 높았고(P<0.01), 인슐린저항지수도 비만군에서 $64.6{\pm}31.6$으로 정상군보다 유의하게 높았다(P<0.01). IGF-I은 비만군에서 $498.1{\pm}122.2ng/mL$로 정상군보다 유의하게 높았고(P<0.05), IGFBP-3도 비만군에서 $3,777{\pm}4,721ng/mL$로 정상군보다 유의하게 높았다(P<0.05). 인슐린은 체질량지수(r=0.394), 비만도(r=0.304)와 양의 상관관계를 나타냈다. IGFBP-3는 비만도(r=0.419), 이완기 혈압(r=0.264), 체질량지수(r=0.247)와 양의 상관관계를 보였다. 인슐린저항지수는 체질량지수(r=0.595), 혈중 중성지방(r=0.515), 비만도(0.469)와 양의 상관관계를 나타냈다. 결 론 : 비만 청소년에서 혈중 인슐린, 인슐린저항지수, IGF-I, IGFBP-3가 증가하였다. 청소년 비만에서 이들 검사는 심혈관질환으로의 진행을 예측하는데 유용하리라 생각한다.

Keywords

References

  1. Sabin MA, Crowne EC, Shield JPH. The prognosis in childhood obesity. Curr Paediatr 2004;14:110-4 https://doi.org/10.1016/j.cupe.2003.11.011
  2. Freemark M, Bursey D. The effects of metformin on body mass index and glucose tolerance in obese adolescents with fasting hyperinsulinemia and a family history of type 2 diabetes. Pediatrics 2001;107:E55 https://doi.org/10.1542/peds.107.4.e55
  3. Sigal RJ, EL-Hashimy M, Martin BC, Soeldner JC, Krolewski AS, Warram JH, et al. Acute postchallenge hyperinsulinemia predicts weight gain : A prospective study. Diabetes 1997;46:1025-9 https://doi.org/10.2337/diabetes.46.6.1025
  4. Wolk K, Larsson SC, Vessby B, Wolk A, Brismar K. Metabolic, anthropometric, and nutritional factors as predictors of circulating insulin-like growth factor binding protein-1 levels in middle-aged and elderly men. J Clin Endocrinol Metab 2004;89:1879-84 https://doi.org/10.1210/jc.2003-031349
  5. Schoen RL, Schragin J, Weissfeld JL, Thaete FL, Evans RW, Rosen CJ, et al. Lack of association between adipose tissue distribution and IGF-1 and IGFBP-3 in men and women. Cancer Epidemiol Biomark Prev 2002;11:581-6
  6. Maccario M, Ramunni J, Oleandri SE, Procopio M, Grottoli S, Rosseto R, et al. Relationships between IGF-1 and age, gender, body mass, fat distribution, metabolic and hormonal variables in obese patients. Int J Obes Relat Metab Disor 1999;23:612-8 https://doi.org/10.1038/sj.ijo.0800889
  7. Yamamoto H, Kato Y. Relationship between plasma insulin- like growth factor I(IGF-1) levels and body mass indices( BMI) in adults. Endocr J 1993;40:41-5 https://doi.org/10.1507/endocrj.40.41
  8. Teramukai S, Rohan T, Eguchi H, Oda T, Shinchi K, Kono S. Anthropometric and behavioral correlates of insulin- like growth factor I and insulin-like growth factor binding protein 3 in middle-aged Japanese men. Am J Epidemiol 2002;156:344-8 https://doi.org/10.1093/aje/kwf069
  9. Probst-Hensch NM, Yuan JM, Stanczyk FZ, Gao YT, Ross RK, Yu MC. IGF-1, IGF-2 and IGPBP-3 in prediagnostic serum : association with colorectal cancer in a cohort of Chinese men in Shanghi. Br J Cancer 2001;85:1695-9 https://doi.org/10.1054/bjoc.2001.2172
  10. Hong YM, Moon KR, Seo JW, Sim JG, Yoo KW, Jeong BJ, et al. National wide study on body mass index, skinfold thickness, arm circumference in Korean children. Korean J Pediatr 1999;42:1186-206
  11. Decsi T, Molnar D. Insulin resistance syndrome in children : pathophysiology and potential management strategies. Pediatr Drugs 2003;5:291-9 https://doi.org/10.2165/00128072-200305050-00002
  12. Casbi G, Torok K, Jeges S, Molnar D. Presence of metabolic cardiovascular syndrome in obese children. Eur J Pediatr 2000;159:91-4 https://doi.org/10.1007/PL00013812
  13. Schulman GI. Cellular mechanisms of insulin resistance. J Clin Invest 2000;106:171-6 https://doi.org/10.1172/JCI10583
  14. Sandhu MS, Gibson JM, Heald AH, Dunger DB, Wareham NJ. Association between insulin-like growth factor-1: insulin- like growth factor-binding protein-1 ratio and metabolic and anthropometric factors in men and women. Cancer Epidemiol Biomarkers Prev 2004;13:166-70 https://doi.org/10.1158/1055-9965.EPI-130-3
  15. Gomez JM, Maravall FJ, Gomez N, Navarro MA, Casamitjana R, Soler J. The IGF-1 system component concentrations that decrease with aging are lower in obesity in relationship to body mass index and body fat. Growth Horm IGF Res 2004;14:91-6. https://doi.org/10.1016/j.ghir.2003.11.004
  16. Baumann G, Shaw MA, Ambum K. Circulating growth hormone binding proteins. J Endocrinol Invest 1994;17:67- 81 https://doi.org/10.1007/BF03344965
  17. Gascon F, Valle M, Martos R, Zafra M, Morales R, Castano MA. Childhood obesity and hormonal abnormalities associated with cancer risk. Eur J Cancer Prev 2004;13: 193-7 https://doi.org/10.1097/01.cej.0000130021.16182.c3
  18. Vaccaro F, Cianfarani S, Pasquino AM, Boscherini B. Is obesity-related insulin status the cause of blunted growth hormone secretion in Turner's syndrome? Metabolism 1995; 44:1033-7 https://doi.org/10.1016/0026-0495(95)90101-9
  19. Kunitomi M, Wada J, Takahashi K, Tsuchiyama Y, Mimura Y, Hida K, et al. Relationship between reduced serum IGF-1 levels and accumulation of visceral fat in Japanese men. Int J Obes Relat Metab Disord 2002;26:361-9 https://doi.org/10.1038/sj.ijo.0801899
  20. Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Inves 1996;97:2601-10 https://doi.org/10.1172/JCI118709
  21. Ben-shlomo Y, Holly J, McCarthy A, Savage P, Davies D, Gunnell D, et al. An investigation of fetal, postnatal and childhood growth with insulin-like growth factor-I and binding protein 3 in adulthood. Clinical Endocrinol 2003;59: 366-73 https://doi.org/10.1046/j.1365-2265.2003.01857.x
  22. Heald AH, Anderson SG, Ivison F, Laing I, Gibson JM, Cruickshank K. C-reactive protein and the insulin-like growth factor(IGF)-system in relation to risk of cardiovascular disease in different ethnic groups. Atherosclerosis 2003;170:79-86 https://doi.org/10.1016/S0021-9150(03)00235-1
  23. Gayet C, Bailhache E, Dumon H, Martin L, Siliart B, Nguyen P. Insulin resistance and changes in plasma concentration of TNF alpha, IGF1, and NEFA in dogs during weight gain and obesity. J Anim Physiol Anim Nutr 2004;88:157- 65 https://doi.org/10.1111/j.1439-0396.2003.00473.x
  24. Andronico G, Mangano MT, Nardi E, Mule G, Piazza G, Cerasola G, et al. Insulin-like growth factor 1 and sodiumlithium countertransport in essential hypertensioin and in hypertensive left ventricular hypertrophy. J Hypertens 1993; 11:1097-101. https://doi.org/10.1097/00004872-199310000-00014
  25. Diez J, Ruilope LM, Rodicio JL. Insulin response to oral glucose in essential hypertensives with increased circulating levels of insulin growth factor 1. J Hypertens Suppl 1991;9:S174-5
  26. Bayes-Genis A, Conover CA, Schwarz RS. The insulin-like growth factor axis : a review of atherosclerosis and restenosis. Cir Res 2000;86:125-30 https://doi.org/10.1161/01.RES.86.2.125
  27. Molnar D, Torok K, Erhardt E, Jeges S. Safety and efficacy of treatment with an ephedrine/caffeine mixture : the first double-blind placebo-controlled pilot study in adolescents. Int J Obes Relat Metab Disord 2000;24:1573-8 https://doi.org/10.1038/sj.ijo.0801433