Expression of Expanded Polyglutamine Disease Proteins in Drosophila (Drosophila Polyglutamine Disease Models)

증가된 글루타민에 의해 초래되는 뇌신경질환의 초파리 모델에 대한 연구

  • Shin, Sang Min (Clinical Research Center, Samsung Biomedical Research Institute) ;
  • Paik, Kyung Hoon (Department of Pediatrics, Sungkyunkwan University, School of Medicine, Samsung Medical Center) ;
  • Jin, Dong Kyu (Department of Pediatrics, Sungkyunkwan University, School of Medicine, Samsung Medical Center)
  • 신상민 (삼성생명과학연구소) ;
  • 백경훈 (성균관대학교 의과대학 소아과학교실) ;
  • 진동규 (성균관대학교 의과대학 소아과학교실)
  • Received : 2004.10.11
  • Accepted : 2004.12.06
  • Published : 2005.04.15

Abstract

Purpose : Polyglutamine diseases are a group of diseases caused by the expansion of a polyglutamine tract in the protein. The present study was performed to verify if polyglutamine disease transgenic Drosophila models show similar dysfunctions as are seen in human patients. Methods : Polyglutamine disease transgenic Drosophila were tested for their climbing ability. And using genetic methods, the effects of anti-apoptotic gene bcl-2 and chemical chaperones on neurodegeneration were observed. Also, spinocerebellar ataxia 2 (SCA2) transgenic Drosophila lines were generated for future studies. Results : Expanded forms of spinocerebellar ataxia 3 (SCA3) transgenic protein causes characteristic locomotor dysfunction when expressed in the nervous system of Drosophila but the anti-apoptotic gene bcl-2 shows no evidence of ameliorating the deleterious effect of the expanded protein. However, Glycerol, a chemical chaperone, seemed to reduce the toxicity, at least in the eyes of the transgenic flies. The level SCA2 expression is too weak in the transgenic SCA2 Drosophila for evaluation. Conclusion : SCA3 transgenic Drosophila show ataxic behavior as observed in human patients. Chemical chaperones such as glycerol may prove beneficial in this class of genetic disease, which has no current method of cure.

목 적 : 폴리글루타민 질환은 해당 발현단백질의 연속되는 글루타민 아미노산 서열이 신장되기 때문에 일어나는 질환군이다. 현 연구는 폴리글루타민 질환 형질전환 초파리 모델들이 환자들 에서와 유사한 장애를 나타내는지 확인하기 위해 수행되었다. 방 법 : 폴리글루타민 질환 (SCA3) 형질전환 초파리를 대상으로 벽을 기어오르는 운동 능력을 검사하였다. 또한 유전학적인 방법을 통해서 아폽토시스를 억제하는 bcl-2 유전자와 화학적 샤페론이 뇌신경의 퇴행에 어떤 영향을 미치는지 확인하였으며 향후의 연구를 위해 척수소뇌 운동실조증 타입 2 (SCA2) 질환을 발현하는 형질전환 초파리를 생산하였다. 결 과 : SCA3 형질전환 초파리에서 신장된 폴리글루타민 배열을 지니는 질환성 초파리의 경우 신경계에서 해당 단백질을 발현하였을 경우 전형적인 운동 능력 상실을 나타냈다. 아폽토시스를 억제하는 유전자인 bcl-2를 함께 발현했을 경우, 신장된 단백질의 유독한 영향을 약화시키지 못했지만, 화학적 샤페론인글리세롤의 경우 적어도 눈에서의 유독한 영향은 억제하는 것으로 보인다. 본 연구진에 의해 개발된 SCA2 형질전환 초파리의 경우 유해 단백질의 발현 정도가 낮아서 정확한 분석이 어려웠다. 결 론 : SCA3 형질전환 초파리는 환자들에서 발견되는 운동실조증을 보였다. 글리세롤과 같은 화학적 샤페론이 현재 치료가 전무한 이 종류의 질환군의 치료에 효과적일 것으로 사료된다.

Keywords

Acknowledgement

Supported by : 소아과학회

References

  1. Ross CA. Intra nuclear inclusions : A common pathogenic mechanism for glutamine-repeat neurodegenerative diseases? Neuron 1997;19:1147-50 https://doi.org/10.1016/S0896-6273(00)80405-5
  2. Klockgether T, Evert B. Genes involved in hereditary ataxias. Trends Neurosci 1998;21:413-8 https://doi.org/10.1016/S0166-2236(98)01315-0
  3. Martindale D, Hackam A, Wieczorek A, Ellerby L, Wellington C, McCutcheon K, et al. Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates. Nat Genet 1998;18:150-4 https://doi.org/10.1038/ng0298-150
  4. Rosenberg RN. Machado-Joseph disease : an autosomal dominant motor system degeneration. Mov Disord 1992;7: 193-203 https://doi.org/10.1002/mds.870070302
  5. Paulson HL, Perez MK, Trottier Y, Trojanowski JQ, Subramony SH, Das SS, et al. Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 1997;19:333-44 https://doi.org/10.1016/S0896-6273(00)80943-5
  6. Schmidt T, Landwehrmeyer GB, Schmitt I, Trottier Y, Auburger G, Laccone F, et al. An isoform of ataxin-3 accumulates in the nucleus of neuronal cells in affected brain regions of SCA3 patients. Brain Pathol 1998;8:669-79
  7. Koyano S, Uchihara T, Fujigasaki H, Nakamura A, Yagishita S, Iwabuchi K. Neuronal intranuclear inclusions in spinocerebellar ataxia type 2 : triple-labeling immunofluorescent study. Neurosci Lett 1999:273;117-20 https://doi.org/10.1016/S0304-3940(99)00656-4
  8. Jin DK, Oh MR, Song SM, Koh SW, Lee M, Kim GM, et al., Frequency of spinocerebellar ataxia types 1, 2, 3, 6, 7 and dentatorubral pallidoluysian atrophy mutations in Korean patients with spinocerebellar ataxia. J Neurol 1999;246: 207-10 https://doi.org/10.1007/s004150050335
  9. Warrick JM, Paulson HL, Gray-Board GL, Bui QT, Fischbeck KH, Pittman RN, et al. Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell 1998;93:939-49 https://doi.org/10.1016/S0092-8674(00)81200-3
  10. Paulson HL, Bonini NM, Roth KA. Polyglutamine disease and neuronal cell death. Proc Natl Acad Sci USA 2000;97: 12957-8
  11. Feany MB, Bender WW. A Drosophila model of Parkinson's disease. Nature 2000;404:394-8 https://doi.org/10.1038/35006074
  12. Tatzelt J, Prusiner SB, Welch WJ. Chemical chaperones interfere with the formation of scrapie prion protein. EMBO J 1996;15:6363-73
  13. Franceschini N. Pupil and pseudopupil in the copound eye of Drosophila. Information processing in the visual systems of arthropods. Berlin : Springer-Verlag, 1972:75-82
  14. Spradling AC, Rubin GM. The effect of chromosomal position on the expression of the Drosophila xanthine dehydrogenase gene. Cell 1983;34:47-57 https://doi.org/10.1016/0092-8674(83)90135-6
  15. Minois N, Khazaeli AA, Curtsinger JW. Locomotor activity as a function of age and life span in Drosophila melanogaster overexpressing hsp70. Exp Gerontol 2001;36:1137-53 https://doi.org/10.1016/S0531-5565(00)00263-1
  16. Gorman M, Baker BS. How flies make one equal two : Dosage compensation in Drosophila. Trends Genet 1994;10: 376-80 https://doi.org/10.1016/0168-9525(94)90135-X
  17. Sanchez I, Xu CJ, Juo P, Kakizaka A, Blenis J, Yuan J. Caspase-8 is required for cell death induced by expanded polyglutamine repeats. Neuron 1999;22:623-33 https://doi.org/10.1016/S0896-6273(00)80716-3
  18. Li SH, Lam S, Cheng AL, Li XJ. Intranuclear huntingtin increases the expression of caspase-1 and induces apoptosis. Hum Mol Genet 2000;9:2859-67 https://doi.org/10.1093/hmg/9.19.2859
  19. Jackson GR, Salecker I, Dong X, Yao X, Arnheim N, Faber PW, et al. Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron 1998;21:633-42 https://doi.org/10.1016/S0896-6273(00)80573-5
  20. Brand AH, Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 1993;118:401-15
  21. Kazemi-Esfarjani P, Benzer S. Genetic suppression of polyglutamine toxicity in Drosophila. Science 2000;287:1837-40 https://doi.org/10.1126/science.287.5459.1837
  22. Warrick JM, Chan HY, Gray-Board GL, Chai Y, Paulson HL, Bonini NM. Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet 1999;23:425-428 https://doi.org/10.1038/70532
  23. Kouroku Y, Fujita E, Urase K, Tsuru T, Setsuie R, Kikuchi T, et al. Caspases that are activated during generation of nuclear polyglutamine aggregates are necessary for DNA fragmentation but not sufficient for cell death. J Neurosci Res 2000;62:547-56 https://doi.org/10.1002/1097-4547(20001115)62:4<547::AID-JNR9>3.0.CO;2-G
  24. Evert BO, Wullner U, Klockgether T. Cell death in polyglutamine diseases. Cell Tissue Res 2000;301:189-204 https://doi.org/10.1007/s004410000228
  25. Degterev A, Boyce M, Yuan J. The channel of death. J Cell Biol 2001;155:695-8 https://doi.org/10.1083/jcb.200110147
  26. Heiser V, Schrezinger E, Boeddrich A, Nordhoff E, Lurz R, Schugardt N, et al. Inhibition of huntingtin fibrillogenesis by specific antibodies and small moelcules : Implication for Huntington's disease therapy. Proc Natl Acad Sci USA 2000;97:6739-44
  27. Nagao Y, Ishiguro H, Nukina N. DMSO and glycerol reduce bacterial death induced by expression of truncated Nterminal huntingtin with expanded polyglutamine tracts. Biochimi Biopy Acta 2000;1502:247-56 https://doi.org/10.1016/S0925-4439(00)00047-8
  28. Durr A, Smadja D, Cancel G, Lezin A, Stevanin G, Mikol J, et al. Autosomal dominant cerebellar ataxia type I in Martinique (French West Indies) : clinical and neuropathological analysis of 53 patients from three unrelated SCA2 families. Brain 1995;118:1573-81. https://doi.org/10.1093/brain/118.6.1573
  29. Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 1996;14:269-76 https://doi.org/10.1038/ng1196-269
  30. Huynh DP, Del Bigio MR, Ho DH, Pulst SM. Expression of ataxin-2 in brains from normal individuals and patients with Alzheimer's disease and spinocerebellar ataxia 2. Ann Neurol 1999;45:232-41 https://doi.org/10.1002/1531-8249(199902)45:2<232::AID-ANA14>3.0.CO;2-7