균일침전법에 의한 이산화티타늄 제조공정에서 TiOCl2 수용액의 Cl-total:Ti+4의 몰 비율이 TiO2 결정구조에 미치는 영향

Influence of the Molar Ratio of Cl-total:Ti+4 on the Crystalline Structure in Preparation of TiO2 from Aqueous TiOCl2 Solution by Homogeneous Precipitation Method

  • 이정훈 (우석대학교 화학공학과) ;
  • 양영석 (우석대학교 화학공학과)
  • 투고 : 2005.06.30
  • 심사 : 2005.10.12
  • 발행 : 2005.12.10

초록

$TiCl_4$와 염산수용액을 사용하여 균일침전반응으로 브루카이트상과 루틸상의 혼합상 $TiO_2$ 분말을 제조하여 분말특성을 조사하였다. 분석결과로부터 순수한 루틸상과 혼합상이 합성되기 위한 침전용액의 ${Cl^-}_{total}:Ti^{+4}$의 몰 비율이 제시되었다. 또한, 혼합상이 얻어지는 조건에서는 염산의 농도가 증가할수록 브루카이트상의 부피분율이 증가하였으며, 이 분말을 열처리한 결과 브루카이트상은 루틸상으로 직접 상변화하지 않고 $800^{\circ}{\sim}850^{\circ}C$에서 아나타제상으로 상전이한 후 $1000^{\circ}C$에서 최종적으로 안정한 루틸상으로 상변화되었다.

$TiO_2$ powders with rutile and brookite phases were synthesized through homogeneous precipitation of the aqueous $TiOCl_2$ solution, prepared from $TiCl_4$ and HCl solution, and their properties were characterized. Based on the analytical results appropriate molar ratios of ${Cl^-}_{total}:Ti^{+4}$ in precipitating solution for synthesis of pure rutile phase and a mixture of rutile and brookite phases were proposed. The volumetric proportion of brookite increased with increasing HCl concentration under a typical condition obtaining mixed phase of rutile and brookite. The brookite phase in the mixture was transformed to anatase phase by heat treatment at about $800^{\circ}C{\sim}850^{\circ}C$, and finally converted to rutile phase at $1000^{\circ}C$.

키워드

참고문헌

  1. A. Pottier, C. Chaneac, E. Trone, L. Mazerolles, and J, Jolivet, J. Mater. Chem., 11, 1116 (2001) https://doi.org/10.1039/b100435m
  2. J. H. Lee and Y. S. Yang, Korean Journal of Materals Research., 12 (2002)
  3. J. H. Lee and Y. S. Yang, J. Korean Ind. Eng. Chem., 14, 103 (2003)
  4. J. H. Lee and Y. S. Yang, J. Korean lnd. Eng. Chem., 14, 224 (2003)
  5. J. H. Lee and Y. S. Yang, J. Mater. Sci., 40, 2843 (2005) https://doi.org/10.1007/s10853-005-2434-5
  6. J. H. Lee and Y. S. Yang, Materials Chemist/yond Physics., 93, 237 (2005)
  7. Y. Zheng, E. Shi, Z. Chen, W. Li, and X. Hu, J. Mater. Chem., 11, 1547 (2001) https://doi.org/10.1039/b009203g
  8. L. Gao and Q. Zhang, Materials Transactions., 42, 8, 1676 (2001) https://doi.org/10.2320/matertrans.42.1676
  9. M. Wu, J. Lang, A. Huang, and Y. Luo. Langmuir., 15, 8822 (1999) https://doi.org/10.1021/la990514f
  10. H. Cheng, J. Ma, Z. Zhao, and L. Qi., Chem. Mater., 7, 663 (1995) https://doi.org/10.1021/cm00052a010
  11. D. S. Seo, J. K. Lee, H. G. You, and H. Kim., J. Kor. Cera. Soc., 38, 331 (2001)
  12. H. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa, H. Mori, T. Skato, and S. Yanagida, J. Mater Chem., 11, 1694 (2001) https://doi.org/10.1039/b008974p
  13. Y. Zheng, E. Shi, S. Chen, W. Li, and X. Hu, J. Am. Cera. Soc., 83, 2634 (2000)
  14. Y. Zheng, E. Shi, S. Chi, W., and Li, X. Hu, J. Mater Sci Letters., 19, 1445 (2000) https://doi.org/10.1023/A:1011010306699
  15. H. Kominami, M. Kohno, and Y. Kera, J. Mater. Chem., 10, 1151 (2000) https://doi.org/10.1039/a908528i
  16. X. Ye, J. Sha, Z. Jiao, L. Zhang, Nanostructured Materials., 8, 919 (1997) https://doi.org/10.1016/S0965-9773(98)00013-0
  17. M. Koelsch, S. Cassaignon, J. F. Guillemoles, and J. P. Jolvet, Thin Solid film. 403, 312 (2002) https://doi.org/10.1016/S0040-6090(01)01509-7
  18. C. C. Wang and J. Y. Ying, Chem. Mater., 11, 3113 (1999) https://doi.org/10.1021/cm990180f
  19. G. A. Tompsett, G. A. Bowmaker, R. P. Cooney, J. B. Metson, K. A. Rodgers, and J. M. Seakins, J. Raman spectroscopy, 26, 50 (1995)
  20. S. J. Kim, S. D. Park, and Y. H. Jeong, J. Am. Cera. Soc., 82, 927 (1999) https://doi.org/10.1111/j.1151-2916.1999.tb01855.x
  21. H. D. Nam, B. H. Lee, S. J. Kim, C. H. Jung, J. H. Lee, and S. Park, J. Japan Applied Physics., 37, 4603 (1998) https://doi.org/10.1143/JJAP.37.4603
  22. S. D. Park, Y. H. Cho, W. W. Kim, and S. J. Kim, J. Solid State Chem., 146, 230 (1999) https://doi.org/10.1006/jssc.1999.8342