Phase Equilibria of the Poly(4-vinylphenol)/Ketone Solutions

Poly(4-vinylphenol)/Ketone 용액계의 상평형

  • Kim, Mi Kyung (Department of Chemical Engineering, Kangwon National University) ;
  • Kim, Ki-Chang (Department of Chemical Engineering, Kangwon National University)
  • 김미경 (강원대학교 화학공학과) ;
  • 김기창 (강원대학교 화학공학과)
  • Received : 2005.06.20
  • Accepted : 2005.08.26
  • Published : 2005.10.31

Abstract

Phase separations of Poly(4-vinylphenol)(PVPh)/acetone and PVPh/methyl ethyl ketone solutions were measured using the thermal optical analysis (TOA) method. The phase separations of these system showed the behaviors of LCST-type (lower critical solution temperature). The measured cloud temperatures were lowered with increasing molecular weight of PVPh, and cloud temperatures of PVPh/MEK solutions shifted to higher temperature regions, compared to the PVPh/acetone solutions. Phase equilibria of PVPh/ketone solutions were described with taking account of self-associations of PVPh and cross-associations between PVPh and solvent, by using the PC-SAFT equation of state. PC-SAFT EoS parameters of PVPh and cross-association parameters were determined by simultaneously fitting liquid density data of PVPh and VLE data of the PVPh/acetone system. The estimated parameters of PVPh and cross-association parameters were utilized to calculations of the binodal and spinodal curves, and the calculated binodal curves were in good agreements with the experimental cloud temperatures.

본 연구에서는 Poly(4-vinylphenol)(PVPh)/acetone 및 PVPh/methyl ethyl ketone 용액계의 액-액 상분리 실험을 TOA(thermal optical analysis)방법으로 실행하였다. 실험을 수행한 PVPh/acetone 및 PVPh/MEK 용액계의 상분리 거동은 두 용액 계 모두 LCST 형태의 거동을 보였고 상분리 온도는 고분자의 분자량이 증가함에 따라 낮아지는 경향을 보였다. 또한, 용매의 분자량이 상분리에 미치는 영향으로는 용매의 분자량이 큰 PVPh/MEK 용액의 상분리 온도가 PVPh/acetone 용액의 경우보다 높은 온도 영역에 분포하는 경향을 보였다. 실험에서 측정된 상분리 데이터를 PVPh와 ketone 분자간의 교차회합과 PVPh의 자기회합을 고려한 PC-SAFT 상태방정식 관계를 이용하여 액-액 상평형 관점에서 검토하여 보았다. PVPh의 PC-SAFT 상태방정식 파라미터와 교차회합 파라미터는 PVPh의 용융상태의 밀도 데이터와 PVPh/acetone 용액의 기-액 평형 데이터를 동시에 고려하여 추산하였다. 추산된 파라미터를 이용하여 각 고분자 용액계의 spinodal curve와 binodal curve를 계산하였으며, 계산된 binodal curve는 실험에서 측정된 상분리 온도와 일치하는 경향을 보였다.

Keywords

References

  1. Wei, Y. S. and Sadus, R. J., 'Equation of State for the Calculation of Fluid-Phase Equilibria,' AIChE J., 46(1), 169-196(2000) https://doi.org/10.1002/aic.690460119
  2. Sanchez, I. C. and Lacombe, R. H., 'An Elementary Molecular Theory of Classical Fluids: Pure Fluids,' J. of Phys. Chem., 80(21), 2352-2362(1976) https://doi.org/10.1021/j100562a008
  3. Lacombe, R. H. and Sanchez, I. C., 'Statistical Thermodynamics of Fluid Mixtures,' J. of Phys. Chem., 80(23), 2568-2580(1976) https://doi.org/10.1021/j100564a009
  4. Kumar, S. K. and Suter, U. W. and Reid, R. C., 'A Statistical Mechanics Based Lattice Model Equation of State,' Ind. Eng. Chem. Res., 26(12), 2532-2542(1987) https://doi.org/10.1021/ie00072a026
  5. Yoo, K.-P., Shin, M. S., Yoo, S. J., You, S.-S. and Lee, C. S., 'A New Equation of State based on Nonrandom Two-Fluid Lattice Theory for Complex Mixtures,' Fluid Phase Equilibria, 111, 175- 201(1995) https://doi.org/10.1016/0378-3812(95)02773-8
  6. Song, Y., Lambert, S. M. and Prausnitz, J. M., 'A Perturbed Hard-Sphere-Chain Equation of State for Normal Fluids and Polymers,' Ind. Eng. Chem. Res., 33(4), 1047-1057(1994) https://doi.org/10.1021/ie00028a037
  7. Chiew, Y., 'Percus-Yevick Integral-Equation Theory for Athermal Hard-Sphere Chains,' Mol. Phys., 70(1), 129-143(1990) https://doi.org/10.1080/00268979000100891
  8. Song, Y., Lambert, S. M. and Prausnitz, J. M., 'Equation of State for Mixtures of Hard-Sphere Chains Including Copolymers,' Macromolecules, 27(2), 441-448(1994) https://doi.org/10.1021/ma00080a018
  9. Huang, S. H. and Radosz, M., 'Equation of State for Small, Large, Polydisperse and Associating Molecules,' Ind. Eng. Chem. Res., 29(11), 2284-2294(1990) https://doi.org/10.1021/ie00107a014
  10. Huang, S. H. and Radosz, M., 'Equation of State for Small, Large, Polydisperse and Associating Molecules: Extension to Fluid Mixtures,' Ind. Eng. Chem. Res., 30(8), 1994-2005(1991) https://doi.org/10.1021/ie00056a050
  11. Gross, J. and Sadowski, G., 'Perturbed-Chain SAFT: an Equation of State Based on a Perturbation Theory for Chain Molecules,' Ind. Eng. Chem. Res., 40(4), 1244-1260(2001) https://doi.org/10.1021/ie0003887
  12. Muller, E. A. and Gubbins, K. E., 'Molecular Based Equations of State for Associating Fluids: A Review of SAFT and Related Approaches,' Ind. Eng. Chem. Res., 40(10), 2193-2211(2001) https://doi.org/10.1021/ie000773w
  13. Economou, I. G., 'Statistical Associating Fluid Theory: A Successful Model for the Calculation of Thermodynamic and Phase Equilibrium Properties of Complex Fluid Mixtures,' Ind. Eng. Chem. Res., 41(5), 953-962(2002) https://doi.org/10.1021/ie0102201
  14. Kouskoumvekaki, I. A., von Solms, N., Michelsen, M. L. and Kontogeorgis, G. M., 'Application of the Perturbed Chain SAFT Equation of State to Complex Polymer Systems using Simplified Mixing Rules,' Fluid Phase Equilibria, 215, 71-78(2004) https://doi.org/10.1016/S0378-3812(03)00363-7
  15. Yarrison, M. and Chapman, W. G., 'A Systematic Study of Methanol+ n-Alkan Vapour-Liquid and Liquid-Liquid Equilibria using the CK-SAFT and PC-SAFT Equation of State,' Fluid Phase Equilibria, 226, 195-205(2004) https://doi.org/10.1016/j.fluid.2004.09.024
  16. Freeman, P. I. and Rowlinson, J. S., 'Lower Critical Points in Polymer Solutions,' Polymer, 1, 20-26(1960) https://doi.org/10.1016/0032-3861(60)90004-5
  17. Prange, M. M., Hooper, H. H. and Prausnitz, J. M., 'Thermodynamics of Aqueous Systems Containing Hydrophilic Polymers or Gels,' AIChE J., 35(5), 803-813(1989) https://doi.org/10.1002/aic.690350511
  18. Moskala, E. J., Howe, S. E., Painter, P. C. and Coleman, M. M., 'On the Role of Intermolecular Hydrogen Bonding in Miscible Polymer Blends,' Macromolecules, 17(9), 1671-1678(1984) https://doi.org/10.1021/ma00139a006
  19. Rinderknecht, S. and Brisson, J., 'Orientation of a Miscible Polymer Blend with Strong Inter chain Hydrogen Bonds: Poly (vinylphenol)- Poly(ethylene oxide),'Macromolecules, 32(25), 8509-8516(1999) https://doi.org/10.1021/ma9808575
  20. Li, D. and Brisson, J., 'Orientation Behavior in Uniaxially Stretched Poly(methyl methacrylate)-Poly(4-vinylphenol)Blends,' Macromolecules, 30(26), 8425-8432(1997) https://doi.org/10.1021/ma970498y
  21. Barker, J. A. and Henderson, D., 'Perturbation Theory and Equation of state for Fluids: The Square-Well Potential,' J. of Chem. Phys., 47(8), 2856-2861(1967) https://doi.org/10.1063/1.1712308
  22. Gross, J. and Sadowski, G., 'Application of Perturbation Theory to a Hard-Chain Reference Fluids: An Equation of State for Squarewell Chains,' Fluid Phase Equilibria, 168, 183-199(2000) https://doi.org/10.1016/S0378-3812(00)00302-2
  23. Gross, J., Spuhl, O., Tumakaka, F. and Sadowski, G., 'Modeling Copolymer Systems using the Perturbed-Chain SAFT Equation of State,' Ind. Eng. Chem. Res., 42(6), 1266-1274(2003) https://doi.org/10.1021/ie020509y
  24. Gros, H. P., Bottini, S. and Brignole, E. A., 'A Group Contribution Equation of State for Associating Mixtures,' Fluid Phase Equilibira, 116, 537-544(1996) https://doi.org/10.1016/0378-3812(95)02928-1
  25. Bae, Y. C., Lambert, S. M., Soane, D. S. and Prausnitz, J. M., 'Cloud-Point Curves of Polymer Solutions from Thermooptical Measurements,' Macromolecules, 24(15), 4403-4407(1991) https://doi.org/10.1021/ma00015a024
  26. Saraiva, A., Persson, O. and Fredenslund, A., 'An Experimental Investigation of Cloud-Point Curves for the Poly(ethylene glycol)/ Water System at Varying Molecular Weight Distributions,' Fluid Phase Equilibria, 91, 291-311(1993) https://doi.org/10.1016/0378-3812(93)85105-U
  27. Daubert, T. E., Danner, R. P., Sibul, H. M. and Stebbins, C. C., 'Physical and Thermodynamic Properties of Pure Chemical Data Compilation,' Taylor & Francis(1995)
  28. Lee, S.-H., Hasch, B. M. and McHugh, M. A., 'Calculating Copolymer Solution behavior with Statistical Associating Fluid Theory,' Fluid Phase Equilibria, 117, 61-68(1996) https://doi.org/10.1016/0378-3812(95)02937-0
  29. Sadowski, G., Mokrushina, L. V. and Arlt, W., 'Finite and Infinite Dilution Activity Coefficient in Polycarbonate Systems,' Fluid Phase Equilibria, 139, 391-403(1997) https://doi.org/10.1016/S0378-3812(97)00142-8
  30. Gross, J. and Sadowski, G., 'Modeling Polymer Systems using the Perturbed-Chain Statistical Associating Fluid Theory Equation of State,' Ind. Eng. Chem. Res., 41(5), 1084-1093(2002) https://doi.org/10.1021/ie010449g
  31. Tumakaka, F., Gross, J. and Sadowski, G., 'Modeling of Polymer Phase Equilibria using Perturbed-Chain SAFT,' Fluid Phase Equilibria, 194-197, 541-551(2002) https://doi.org/10.1016/S0378-3812(01)00785-3
  32. Luengo, G., Rubio, R. G. and Sanchez, I. C., 'The System Poly (4-hydroxystyrene)/Poly(vinylacetate)/Acetone: An Experimental and Theoretical Study,' Macromol. Chem. Phys., 195, 1043-1062 (1994) https://doi.org/10.1002/macp.1994.021950320
  33. Luengo, G. and Rojo, G., 'Polymer Solutions with Specific Interactions: x Parameter for Poly(4-hydroxystyrene)+Acetone,' Macromolecules, 24(6), 1315-1320(1991) https://doi.org/10.1021/ma00006a016
  34. Swank, D. J. and Mullins, J. C., 'Evaluation of Methods for Calculating Liquid-Liquid Phase-Splitting,' Fluid Phase Equilibria, 30, 101-110(1986) https://doi.org/10.1016/0378-3812(86)80045-0
  35. Lee, B.-C. and Danner, R. P., 'Group-Contribution Lattice-Fluid EoS: Prediction of LLE in Polymer Solutions,' AIChE J., 42(11), 3223-3230(1996) https://doi.org/10.1002/aic.690421123
  36. Chen, S.-J., Economou, I. G. and Radosz, M., 'Density-Tuned Polyolefin Phase Equilibria. 2. Multicomponent Solutions of Alternating Poly(ethylene-propylene) in Subcritical and Supercritical Olefins. Experiment and SAFT Model,'Macromolecules, 25(19), 4987-4995 (1992) https://doi.org/10.1021/ma00045a026