DOI QR코드

DOI QR Code

Principles of Physiology of Lipid Digestion

  • Bauer, E. (Institute of Animal Nutrition, University of Hohenheim) ;
  • Jakob, S. (Adisseo France S.A.S.) ;
  • Mosenthin, R. (Institute of Animal Nutrition, University of Hohenheim)
  • 투고 : 2004.04.09
  • 심사 : 2004.08.12
  • 발행 : 2005.02.01

초록

The processing of dietary lipids can be distinguished in several sequential steps, including their emulsification, hydrolysis and micellization, before they are absorbed by the enterocytes. Emulsification of lipids starts in the stomach and is mediated by physical forces and favoured by the partial lipolysis of the dietary lipids due to the activity of gastric lipase. The process of lipid digestion continues in the duodenum where pancreatic triacylglycerol lipase (PTL) releases 50 to 70% of dietary fatty acids. Bile salts at low concentrations stimulate PTL activity, but higher concentrations inhibit PTL activity. Pancreatic triacylglycerol lipase activity is regulated by colipase, that interacts with bile salts and PTL and can release bile salt mediated PTL inhibition. Without colipase, PTL is unable to hydrolyse fatty acids from dietary triacylglycerols, resulting in fat malabsorption with severe consequences on bioavailability of dietary lipids and fat-soluble vitamins. Furthermore, carboxyl ester lipase, a pancreatic enzyme that is bile salt-stimulated and displays wide substrate reactivities, is involved in lipid digestion. The products of lipolysis are removed from the water-oil interface by incorporation into mixed micelles that are formed spontaneously by the interaction of bile salts. Monoacylglycerols and phospholipids enhance the ability of bile salts to form mixed micelles. Formation of mixed micelles is necessary to move the non-polar lipids across the unstirred water layer adjacent to the mucosal cells, thereby facilitating absorption.

키워드

참고문헌

  1. Abrams, C. K., M. Hamosh, S. K. Dutta, V. S. Hubbard and P. Hamosh. 1987. Role of non pancreatic lipolytic activity in exocrine pancreatic insufficiency. Gastroenterology 92:125-129.
  2. Alemi, B., M. Hamosh, J. W. Scanlon, C. Salzman-Mann and P. Hamosh. 1981. Fat digestion in very low birth-weight infants: effect of addition of human milk to low birth weight formula. Pediatrics 68:484-489.
  3. Alvaro, D., A. Cantafora, A. F. Attili, S. Ginanni Corradini, C. De Luca, G. Minervini, A. Di Biase and M. Angelico. 1986. Relationships between bile salts hydrophylicity and phospholipid composition in bile of various animal species. Comp. Biochem. Physiol. Vol. 83B:551-554.
  4. Andersson, L., F. Carrière, M. E. Lowe, A. Nilsson and R. Verger. 1996. Pancreatic lipase-related protein 2 but not classical pancreatic lipase hydrolyzes galactolipids, Biochim. Biophys. Acta 1302:236-240.
  5. Armand, M., P. Borel, P. Ythier, G. Dutot, C. Melin, M. Senft, H. Lafont and D. Lairon. 1992. Effects of droplet size, triacylglycerol composition, and calcium on the hydrolysis of complex emulsions by pancreatic lipase: an in vitro study. J. Nutr. Biochem. 3:333-341.
  6. Armand, M., P. Borel, C. Dubois, M. Senft, J. Peyrot, J. Salducci, H. Lafont and D. Lairon. 1994. Characterization of emulsions and lipolysis of dietary lipids in the human stomach. Am. J. Physiol. 266:G372-381.
  7. Armand, M., P. Borel, B. Pasquier, C. Dubois, M. Senft, M. André, J. Peyrot, J. Salducci and D. Lairon. 1996. Physicochemical characteristics of emulsions during fat digestion in human stomach and duodenum. Am. J. Physiol. 271:G172-183.
  8. Armand, M., B. Pasquier, M. André, P. Borel, M. Senft, J. Peyrot, J. Salducci, H. Portugal, V. Jaussan and D. Lairon. 1999. Digestion and absorption of 2 fat emulsions with different droplet size in the human digestive tract. Am. J. Clin. Nutr. 70:1096-1106.
  9. Bernbäck, S., L. Bläckberg and O. Hernell. 1989. Fatty acids generated by gastric lipase promote human milk triacylglycerol digestion by pancreatic colipase-dependent lipase. Biochim. Biophys. Acta 1001:286-293.
  10. Bernbäck, S., L. Bläckberg and O. Hernell. 1990. The complete digestion of human milk triacylglycerol in vitro requires gastric lipase, pancreatic colipase-dependent lipase and bile salt-stimulated lipase. J. Clin. Invest. 85:1221-1226.
  11. Bläckberg, L., O. Hernell and Olivecrona. 1981. Hydrolysis of human milk fat globules by pancreatic lipase: role of colipase, phospholipase A2, and bile salts. J. Clin. Invest. 67:1748-1752.
  12. Bodmer, M. W., S. Angal, G. T. Yarranton, T. J. R. Harris, A. Lyons, D. J. King, G. Piéroni, C. Rivière, R. Verger and P. A. Lowe. 1987. Molecular cloning of a human gastric lipase and expression of the enzyme in yeast. Biochim. Biophys. Acta 909:237-244.
  13. Borel, P., M. Armand, P. Ythier, G. Dutot, C. Melin, M. Senft, H. Lafont and D. Lairon. 1994. Hydrolysis of emulsions with different triacylglycerol and droplet sizes by gastric lipase in vitro, effect on pancreatic lipase activity. J. Nutr. Biochem. 5:124-133.
  14. Borel, P., P. Grolier, M. Armand, A. Partier, H. Lafont, D. Lairon and V. Azais-Braesco. 1996. Carotenoids in biological emulsions: solubility, surface-to-core distribution, and release from lipid droplets. J. Lipid Res. 37: 250-261.
  15. Borgström, B. 1974. Fat digestion and absorption. In: Biomembranes, Vol. 4B (Ed. D. H. Smyth). Plenum Press, London and New York, pp. 555-620.
  16. Borgström, B. 1975. On the interaction between pancreatic lipase and colipase and the substrate and the importance of bile salts. J. Lipid Res. 16:411-417.
  17. Borgström, B. 1980. Importance of phospholipids, pancreatic phospholipase A2, and fatty acid for the digestion of dietary fat. In vitro experiments with the porcine enzymes. Gastroenterology 78:954-962.
  18. Borgström, B., A. Dahlquist, G. Lundh and J. Sjövall. 1957. Studies of intestinal digestion and absorption in the human. J. Clin. Invest. 36:1521-1536.
  19. Borgström, B. and C. Erlanson. 1971. Pancreatic juice colipase: physiological importance. Biochim. Biophys. Acta 242:509-513.
  20. Borgström, B. and C. Erlanson. 1973. Pancreatic lipase and colipase. Interactions and effects of bile salts and other detergents. Eur. J. Biochem. 37:60-68.
  21. Borgström, B. and C. Erlanson-Albertsson. 1984. Pancreatic colipase. In: Lipases (Ed. B. Borgström and H. L. Brockman). Elseviers Science Publishers, Amsterdam, The Netherlands, pp. 151-183.
  22. Borgström, B. and H. Hildebrand. 1975. Lipase and co-lipase activities of human small intestinal contents after a liquid test meal. Scand. J. Gastroenterol. 10:585-591.
  23. Bosc-Bierne, I., J. Rathelot, C. Perrot and L. Sarda. 1984. Studies on chicken pancreatic lipase and colipase. Biochim. Biophys. Acta 794:65-71.
  24. Brindley, D. N. 1974. The intracellular phase of fat absorption. In: Biomembranes, Vol. 4B (Ed. D. H. Smyth). Plenum Press, London and New York, pp. 621-671.
  25. Brindley, D. N. 1984. Digestion, absorption and transport of fats: general principles. In: Fats in Animal Nutrition (Ed. J. Wiseman). Butterworths, London, pp. 85-103.
  26. Brockerhoff, H. and R. G. Jensen. 1974. Lipolytic Enzymes. Academic Press, New York, pp. 34-90.
  27. Brockman, H. L. 1984. General features of lipolysis: reaction scheme, interfacial structure and experimental approaches. In: Lipases (Ed. B. Borgström and H. L. Brockman). Elsevier Science Publishers B.V., Amsterdam, pp. 3-46.
  28. Brockman, H. L. 2000. Kinetic behaviour of the pancreatic lipasecolipase-lipid system. Biochimie 82:987-995. https://doi.org/10.1016/S0300-9084(00)01185-8
  29. Carey, M. C. and O. Hernell. 1992. Digestion and absorption of fat. Semin. Gastrointest. Dis. 3:189-208.
  30. Carey, M. C., D. M. Small and C. M. Bliss. 1983. Lipid digestion and absorption. Annu. Rev. Physiol. 45:651-677.
  31. Carrière, F., J. A. Barrowman, R. Verger and R. Laugier. 1993. Secretion and contribution to lipolysis of gastric and pancreatic lipases during a test meal in humans. Gastroenterology 105:876-888.
  32. Carrière, F., Y. Gargouri, H. Moreau, S. Ransac, E. Rogalska and R. Verger. 1994. Lipases: Their Structure, Biochemistry, and Application (Ed. P. Woolley and S. B. Petersen). Cambridge University Press, Cambridge England, pp. 181-205.
  33. Chen, Q., B. Sternby and A. Nilsson. 1989. Hydrolysis of triacylglycerol arachidonic and linoleic acid ester bonds by human pancreatic lipase and carboxyl ester lipase. Biochim. Biophys. Acta 1004:372-385.
  34. Chen, Q., L. Bläckberg, A. Nilsson, B. Sternby and O. Hernell. 1994. Digestion of triacylglycerols containing long-chain polyenoic fatty acids in vitro by colipase-dependent pancreatic lipase and human milk bile salt-stimulated lipase. Biochim. Biophys. Acta 1210:239-243.
  35. Clark, S. B., B. Brause and P. R. Holt. 1969. Lipolysis and absorption of fat in the rat stomach. Gastroenterology 56:214-222.
  36. Cohen, M., R. G. H. Morgan and A. F. Hofmann. 1971. Lipolytic activity of human gastric and duodenal juice against medium and long chain triglycerides. Gastroenterology 60(1):1-15.
  37. Crandall, W. V. and M. E. Lowe. 2001. Colipase residues Glu$^64$ and Arg$^65$ are essential for normal lipase-mediated fat digestion in the presence of bile salt micelles. J. Biol. Chem. 276:12505-12512.
  38. D’Agostino, D., R. A. Cordle, J. Kullman, C. Erlanson-Albertsson, L. J. Muglia and M. E. Lowe. 2002. Decreased postnatal survival and altered body weight regulation in procolipasedeficient mice. J. Biol. Chem. 277:7170-7177.
  39. Demarne, Y., T. Corring, A. Pihet and E. Sacquet. 1982. Fat absorption in germ-free and conventional rats artificially deprived of bile secretion. Gut 23:49-57.
  40. DeNigris, S. J., M. Hamosh, D. K. Kasbekar, T. C. Lee and P. Hamosh. 1988. Lingual and gastric lipases: species differences in the origin of pre-pancreatic digestive lipases and in the localization of gastric lipase. Biochim. Biophys. Acta 959:38-45.
  41. Dietschy, J. M. 1978. General principles governing movement of lipids across biological membranes. In: Disturbances in Lipid Lipoprotein Metabolism (Ed. J. M. Dietschy, A. M. Gotto Jr. and J. A. Ontko). Bethesda, American Physiological Society, Washington. pp. 1-28.
  42. Drackley, J. D. 2000. Lipid metabolism. In: Farm Animal Metabolism and Nutrition (Ed. J. P. F. D'Mello). CAB International publishing, UK, pp. 97-119.
  43. Egloff, M. P., L. Sarda, R. Verger, C. Cambillau and H. Van Tilbeurgh. 1995. Crystallographic study of the structure of colipase and of the interaction with pancreatic lipase. Protein Sci. 4:44-57.
  44. Engstrom, J. F., J. J. Rybak, M. Duber and N. J. Greenberger. 1968. Evidence for a lipase system in canine gastric juice. Am. J. Med. Sci. 256:346-351.
  45. Entressangles, B. and P. Desnuelle. 1968. Action of pancreatic lipase on aggregated glyceride molecules in an isotropic system. Biochim. Biophys. Acta 159:285-295.
  46. Erlanson-Albertsson, C., B. Weström, S. Pierzynowski, S. Karlsson and B. Ahren. 1991. Pancreatic procolipase activation peptide-enterostatin-inhibits pancreatic enzyme secretion in the pig. Pancreas 6:619-624.
  47. Erlanson-Albertsson, C. 1992. Enterostatin: the pancreatic procolipase activation peptide - a signal for regulation of fat intake. Nutr. Rev. 50:307-310.
  48. Fält, H., O. Hernell and L. Bläckberg. 2002. Does bile saltstimulated lipase affect cholesterol uptake when bound to rat intestinal mucosa in vitro? Pediatr. Res. 52:509-515.
  49. Fillery-Travis, A. J., L. H. Foster and M. M. Robins. 1995. Interactions between two physiological surfactants: L-$\alpha$- phosphatidylcholine and sodium taurocholate. Biophys. Chem. 54:253-260.
  50. Friedman, H. I. and B. Nylund. 1980. Intestinal fat digestion, absorption and transport. A review. Am. J. Clin. Nutr. 33:1108-1139.
  51. Fukunaga, T., M. Nagahama, K. Hatsuzawa, K. Tani, A. Yamamoto and M. Tagaya. 2000. Implication of sphingolipid metabolism in the stability of the Golgi apparatus. J. Cell Sci. 113:3299-3307.
  52. Gaull, G. E. and C. E. Wright. 1987. Taurine conjugation of bile acids protects human cells in culture. Adv. Exp. Med. Biol. 217:61-67.
  53. Gargouri, Y., G. Pieroni, C. Rivière, J. F. Saunière, P. A. Lowe, L. Sarda and R. Verger. 1986a. Kinetic assay of human gastric lipase on short- and long-chain triacylglycerol emulsions. Gastroenterology 91:919-925.
  54. Gargouri, Y., G. Pieroni, C. Rivière, P. A. Lowe, J. F. Saunière, L. Sarda and R. Verger. 1986b. Importance of human gastric lipase for intestinal lipolysis: an in vitro study. Biochim. Biophys. Acta 879:419-423.
  55. Gargouri, Y., H. Moreau and R. Verger. 1989. Gastric lipases: biochemical and physiological studies. Biochim. Biophys. Acta 1006:255-271.
  56. Hamosh, M. 1990. Lingual and gastric lipases: their role in fat digestion. CRC Press, Boca Raton, Fl., pp. 1-239.
  57. Hamosh, M. 1995. Lipid metabolism in pediatric nutrition. Pediatr. Clin. North Am. 42:839-859 https://doi.org/10.1016/S0031-3955(16)39020-4
  58. Hamosh, M., H. Klaeveman, R. O. Wolf and R. O. Scow. 1975. Pharyngeal lipase and digestion of dietary triacylglycerol in man. J. Clin. Invest. 55:908-913.
  59. Harrison, E. H. 1988. Bile salt-dependent, neutral cholesteryl ester hydrolase of rat liver: possible relationship with pancreatic cholesteryl ester hydrolase. Biochim. Biophys. Acta 963:28-34. https://doi.org/10.1016/0005-2760(88)90334-7
  60. Heaton, K. W. 1985. Bile salts. In: Liver and Biliary Disease: Pathophysiology, Diagnosis, Management (Ed. R. Wright, G. H. Millward-Sadler, K. G. M. M. Alberti and S. Karran). BaillèreTindall, W.D. Saunders Co., Philadelphia, p. 277.
  61. Helander, H. F. and T. Olivecrona. 1970. Lipolysis and lipid absorption in the stomach of the suckling rat. Gastroenterology 59:22-35.
  62. Hermoso, J., D. Pignol, S. Penel, M. Roth, C. Chapus and J. C. Fontecilla-Camps. 1997. Neutron crystallographic evidence of lipase-colipase complex activation by a micelle. EMBO J. 16:5531-5536.
  63. Hernell, O., J. E. Staggers and M. C. Carey. 1990. Physicalchemical behaviour of dietary and biliary lipids during intestinal digestion and absorption. 2. Phase analysis and aggregation states of luminal lipids during duodenal fat digestion in healthy adult human beings. Biochemistry 29:2041-2056.
  64. Hildebrand, H., B. Borgström, A. Békássy, C. Erlansson-Albertsson and A. Helin. 1982. Isolated colipase deficiency in two brothers. Gut 23:243-246.
  65. Hofmann, A. F. and D. M. Small. 1967. Detergent properties of bile salts: correlation with physiological function. Annu. Rev. Med. 18:333-376.
  66. Holt, P. R. 1971. Fats and bile salts. J. Am. Diet Assoc. 60:491-498.
  67. Howles, P. N., C. P. Carter and D. Y. Hui. 1996. Dietary free and esterified cholesterol absorption in cholesterol esterase (bile salt-stimulated lipase) gene-targeted mice. J. Biol. Chem. 271:7196-7202.
  68. Howles, P., B. Wagner and L. Davis. 1998. Bile salt stimulated lipase is required for proper digestion and absorption of milk triacylglycerols in neonatal mice. FASEB J. 12:A851 (Abstr.).
  69. Hui, D. Y. 1996. Molecular biology of enzymes involved with cholesterol ester hydrolysis in mammalian tissues. Biochim. Biophys. Acta 1303:1-14. https://doi.org/10.1016/0005-2760(96)00085-9
  70. Hui, D. Y. and P. N. Howles. 2002. Carboxyl ester lipase: structure-function relationship and physiological role in lipoprotein metabolism and atherosclerosis. J. Lipid Res. 43:2017-2030.
  71. Jensen, M. S., S. K. Jensen and K. Jakobsen. 1997. Development of digestive enzymes in pigs with emphasis on lipolytic activity in the stomach and pancreas. J. Anim. Sci. 75:437-445.
  72. Kellow, J. E., T. J. Borody, S. F. Philips, R. L. Tucker and A. C. Hadda. 1986. Human interdigestive motility: variations in patterns from oesophagus to colon. Gastroenterology 91:386-395.
  73. Kirby, R. J., S. Zheng, P. Tso, P. N. Howles and D. Y. Hui. 2002. Bile salt-stimulated carboxyl ester lipase influences lipoprotein assembly and secretion in intestine. J. Biol. Chem. 277:4101-4109.
  74. Krogdahl, Å. 1985. Digestion and absorption of lipids in poultry. J. Nutr. 115:675-685.
  75. Lapey, A., J. Kattwinkel, P. A. Di Sant Agnese and L. Laster. 1974. Steatorrhea and azotorrhea and their relation to growth and nutrition in adolescents and young adults with cystic fibrosis. J. Pediatr. 84:328-334.
  76. Laws, B. M. and J. H. Moore. 1963. The lipase and esterase activities of the pancreas and small intestine of the chick. Biochem. J. 87:632-638.
  77. Lee, P. C. and E. Lebenthal. 1993. Prenatal and postnatal development of the human exocrine pancreas. In: The Pancreas: Biology, Pathobiology, and Disease (Ed. V. Liang and W. Go). Raven Press, New York, pp. 57-173.
  78. Levy, E., R. Goldstein, S. Freier and E. Shafrir. 1982. Gastric lipase in the newborn rat. Pediatr. Res. 16:69-74.
  79. Li, F. and D. Y. Hui. 1997. Modified low density lipoprotein enhances the secretion of bile salt-stimulated cholesterol esterase by human monocyte-macrophages. Species-species difference in macrophage cholesterol ester hydrolase. J. Biol. Chem. 272:28666-28671.
  80. Li, F. and D. Y. Hui. 1998. Synthesis and secretion of the pancreatic-type carboxyl ester lipase by human endothelial cells. Biochem. J. 329:675-679.
  81. Liang, Y., R. Medhekar, H. L. Brockman, D. M. Quinn and D. Y. Hui. 2000. Importance of arginines 63 and 423 in modulating the bile salt-dependent and bile salt-independent hydrolytic activities of rat carboxyl ester lipase. J. Biol. Chem. 275:24040-24046.
  82. Liao, T. H., P. Hamosh and M. Hamosh. 1983. Gastric lipolysis in the developing rat-ontogeny of the lipases active in the stomach. Biochim. Biophys. Acta 754:1-9.
  83. Lindstrom, M., B. Sternby and B. Borgström. 1988. Concerted action of human carboxyl ester lipase and pancreatic lipase during digestion in vitro: importance of the physicochemical state of the substrate. Biochim. Biophys. Acta 959:178-184.
  84. Linthorst, J. M., S. Bennett Clark and P. R. Holt. 1977. Triacylglycerol emulsification by amphipaths present in the intestinal lumen during digestion of fat. J. Colloid Interface Sci. 60:1-10.
  85. Lowe, M. E. 1994. Pancreatic Triacylglycerol lipase and colipase: insights into dietary fat digestion. Gastroenterology 107:1524-1536.
  86. Lowe, M. E. 2002. The triacylglycerol lipases of the pancreas. J. Lipid Res. 43:2007-2016. https://doi.org/10.1194/jlr.R200012-JLR200
  87. Malagelada, J. R. and F. Azpiroz. 1989. Determinants of Gastric Emptying and Transit in the Small Intestine. Oxford Univ. Press, New York, pp. 909-937.
  88. Martins, I. J., B. C. Mortimer, J. Miller and T. G. Redgrave. 1996. Effects of particle size and number on the plasma clearance of chylomicrons and remnants. J. Lipid Res. 37:2696-2705.
  89. Mattson, F. H. and R. A. Volpenhein. 1972. Rate and extent of absorption of the fatty acids of fully esterified glycerol, erythritol, and sucrose as measured in thoracic duct cannulated rats. J. Nutr. 102:1177-1180.
  90. Maylié, M. F., M. Charles, C. Gache and P. Desnuelle. 1971. Isolation and partial identification of a pancreatic colipase. Biochim. Biophys. Acta 229:286-289.
  91. Maynard, L. A., J. K. Loosli, H. F. Hintz and R. G. Warner. 1979. Animal Nutrition (7th ed.) McGraw-Hill Book Co., New York, pp. 199-200.
  92. McMurry, J. and M. E. Castellion. 2002. Fundamentals of General, Organic, and Biological Chemistry. Prentice Hall, New York.
  93. Miled, N., S. Canaan, L. Dupuis, A. Roussel, M. Rivière, F. Carrière, A. De Caro, C. Cambillau and R. Verger. 2000. Digestive lipases: from three-dimensional structure to physiology. Biochimie 82:973-986.
  94. Miller, K. W. and D. M. Small. 1982. The phase behaviour of triolein, cholesterol and lecithin emulsions. J. Colloid Interface Sci. 89:466-478.
  95. Momsen, W. E. and H. L. Brockman. 1976. Effects of colipase and taurodeoxycholate on the catalytic and physical properties of pancreatic lipase B at an oil-water interface. J. Biol. Chem. 251:378-383.
  96. Moreau, H., Y. Gargouri, D. Lecat, J. L. Junien and R. Verger. 1988a. Screening of preduodenal lipases in several mammals. Biochim. Biophys. Acta 959:247-252.
  97. Moreau, H., R. Laugier, Y. Gargouri, F. Ferrato and R. Verger. 1988b. Human preduodenal lipase is entirely of gastric fundic origin. Gastroenterology 95:1221-1226.
  98. Moreau, H., A. Bernadac, Y. Gargouri, F. Benkouka, R. Laugier and R. Verger. 1989. Immunocytolocalization of human gastric lipase in chief cells of the fundic mucosa. Histochemistry 91:419-423.
  99. Mu, H. and C.-E. Hoy. 2004. The digestion of dietary triacylglycerols. Prog. Lipid Res. 43:105-133.
  100. Nair, P. P. and D. Kritchevsky. 1971. The Bile Acids; Physiology and Metabolism. Vol.1, Plenum Press, New York.
  101. Nano, J.-L. and P. Savary. 1976. Hydrolysis of an aliphatic monoester in emulsion by swine pancreas lipase: influence of interfacial bile salts molecules upon reaction rate. Biochimie 58:917-926.
  102. Newport, M. J. and G. L. Howarth. 1985. Contribution of gastric lipolysis to the digestion of fat in the neonatal pig. In: Proceedings of the 3rd International Seminar on Digestive Physiology in the Pig (Ed. A. Just, H. Jørgensen and J. A. Fernandez) Copenhagen, Denmark, p. 143.
  103. NIH Consensus Conference. 1993. Triacylglycerol high-density lipoprotein, and coronary heart disease. JAMA 269:505-510.
  104. Northfield, T. C. and I. McColl. 1973. Postprandial concentrations of free and conjugated bile acids down the length of the normal human small intestine. Gut 14:513-518.
  105. Overland, M., M. D. Tokach, S. G. Cornelius, J. E. Pettigrew and J. W. Rust. 1993. Lecithin in swine diets: I. weanling pigs. J. Anim. Sci. 71:1187-1193.
  106. Patton, S. and T. W. Keenan. 1975. The milk fat globule membrane. Biochim. Biophys. Acta 415:273-309.
  107. Patton, J. S. and M. C. Carey. 1981. Inhibition of human pancreatic lipase-colipase activity by mixed bile saltphospholipid micelles. Am. J. Physiol. 241:G328-G336.
  108. Pignol, D., L. Ayvazian, B. Kerfelec, P. Timmins, I. Crenon, J. Hermoso, J. C. Fontecilla-Camps and C. Chapus. 2000. Critical role of micelles in pancreatic lipase activation revealed by small angle neutron scattering. J. Biol. Chem. 275:4220-4224.
  109. Prince, L. M. 1974. In: Emulsions and Emulsion Technology (Ed. K. J. Lissant). Marcel Dekker, New York, pp.125-178.
  110. Rigtrup, K. M. and D. E. Ong. 1992. A retinyl ester hydrolase activity intrinsic to the brush border membrane of rat small intestine. Biochemistry 31:2920-2926.
  111. Rosenwald, A. G. and R. E. Pagano. 1993. Inhibition of glycoprotein traffic through the secretory pathway by ceramide. J. Biol. Chem. 268:4577-4579.
  112. Roussel, A., S. Canaan, M. P. Egloff, M. Rivière, L. Dupuis, R. Verger and C. Cambillau. 1999. Crystal structure of human gastric lipase and model of lysosomal acid lipase, two lipolytic enzymes of medical interest. J. Biol. Chem. 274:16995-17002.
  113. Roy, C. C., M. Roulet, D. Lefebvre, L. Chartrand, G. Lepage and L.-A. Fournier. 1979. The role of gastric lipolysis on fat absorption and bile acid metabolism in the rat. Lipids 14(9):811-815.
  114. Rudd, E. A. and H. L. Brockman. 1984. Pancreatic carboxyl ester lipase (cholesterol esterase). In: Lipases (Ed. B. Borgstrom and H. L. Brockman). Elsevier Science, New York, pp. 185-204.
  115. Sayari, A., H. Mejdoub and Y. Gargouri. 2000. Characterization of turkey pancreatic lipase. Biochimie 82:153-159.
  116. Schonheyder, F. and K. Volquartz. 1946. The gastric lipase in man. Acta Physiol. Scand. 11:349-380.
  117. Schonheyder, F. and K. Volquartz. 1954. Studies on the lipolytic enzyme action. VI. Hydrolysis of trilauryl glycerol by pancreatic lipase. Biochim. Biophys. Acta 15:288-290.
  118. Shamir, R., W. J. Johnson, R. Zolfaghari, H. S. Lee and E. A. Fisher. 1995. Role of bile salt-dependent cholesteryl ester hydrolase in the uptake of micellar cholesterol by intestinal cells. Biochemistry 34:6351-6358.
  119. Sörhede, M., H. Mulder, J. Mei, F. Sundler and C. Erlansson-Albertsson. 1996. Procolipase is produced in the rat stomach –a novel source of enterostatin. Biochim. Biophys. Acta 1301:207-212.
  120. Tsujita, T., N. K. Mizuno and H. L. Brockman. 1987. Nonspecific high affinity binding of bile salts to carboxylester lipase. J. Lipid Res. 28:1434-1443.
  121. Tsujita, T. and H. Okuda. 1990. Effect of bile salts on the interfacial inactivation of pancreatic carboxylester lipase. J. Lipid Res. 31:831-838.
  122. Van Bennekum, A. M., E. A. Fisher, W. S. Blaner and E. H. Harrison. 2000. Hydrolysis of retinyl esters by pancreatic triacylglycerol lipase. Biochemistry 39:4900-4906.
  123. Van Tilbeurgh, H., L. Sarda, R. Verger and C. Cambillau. 1992. Structure of the pancreatic lipase-colipase complex. Nature 359:1599-1622.
  124. Van Tilbeurgh, H., M. P. Egloff, C. Martinez, N. Rugani, R. Verger and C. Cambillau. 1993. Interfacial activation of the lipaseprocolipase complex by mixed micelles revealed by X-ray crystallography. Nature 362:814-820.
  125. Vandermeers, A., M. C. Vandermeers-Piret, J. Rathe and J. Christophe. 1975. Effect of colipase on adsorption and activity of rat pancreatic lipase on emulsified tributyrin in the presence of bile salt. FEBS Lett. 49:334-337.
  126. Verger, R. 1984. Pancreatic lipases. In: Lipases (Ed. B. Borgström and H. L. Brockman). Elsevier, New York, pp. 84-150.
  127. Verger, R. 1997. Interfacial activation of lipases facts and artifacts. Trends Biochem. Tech. 15:32-38.
  128. Ville, E., F. Carrière, C. Renou and R. Laugier. 2002. Physiological study of pH stability and sensitivity to pepsin of human gastric lipase. Digestion 65:73-81.
  129. Wang, C. S. and J. A. Hartsuck. 1993. Bile salt-activated lipase: a multiple function lipolytic enzyme. Biochim. Biophys. Acta 1166:1-19.
  130. Weng, W., L. Li, A. M. van Bennekum, S. H. Potter, E. H. Harrison, W. S. Blaner, J. L. Breslow and E. A. Fisher. 1999. Intestinal absorption of dietary cholesteryl ester is decreased but retinyl ester absorption is normal in carboxyl ester lipase knockout mice. Biochemistry 38:4143-4149.
  131. Wickham, M., M. Garrood, J. Leney, P. D. G. Wilson and A. Fillery-Travis. 1998. Modification of a phospholipid stabilized emulsion interface by bile salt: effect on pancreatic activity. J. Lipid Res. 39:623-632.
  132. Winkler, K. E., E. H. Harrison, J. B. Marsh, J. M. Glick and A. C. Ross. 1992. Characterization of a bile salt-dependent cholesteryl ester hydrolase activity secreted from HepG2 cells. Biochim. Biophys. Acta 1126:151-158.
  133. Young, S. C. and D. Y. Hui. 1999. Pancreatic lipase-colipase mediated triacylglycerol hydrolysis is required for cholesterol transport from lipid emulsions to intestinal cells. Biochem. J. 339:615-620.

피인용 문헌

  1. Designing Food Structure to Control Stability, Digestion, Release and Absorption of Lipophilic Food Components vol.3, pp.2, 2008, https://doi.org/10.1007/s11483-008-9070-y
  2. Review of in vitro digestion models for rapid screening of emulsion-based systems vol.1, pp.1, 2010, https://doi.org/10.1039/c0fo00111b
  3. Changes in WPI-Stabilized Emulsion Interfacial Properties in Relation to Lipolysis and ß-Carotene Transfer During Exposure to Simulated Gastric–Duodenal Fluids of Variable Composition vol.1, pp.1-2, 2010, https://doi.org/10.1007/s13228-010-0002-1
  4. Physicochemical properties and digestibility of emulsified lipids in simulated intestinal fluids: influence of interfacial characteristics vol.7, pp.13, 2011, https://doi.org/10.1039/c1sm05322a
  5. In vitro digestion of curcuminoid-loaded lipid nanoparticles vol.14, pp.9, 2012, https://doi.org/10.1007/s11051-012-1113-0
  6. Influence of cheese matrix on lipid digestion in a simulated gastro-intestinal environment vol.3, pp.7, 2012, https://doi.org/10.1039/c2fo10256k
  7. study of effects of emulsified oil on broiler feed quality vol.84, pp.3, 2013, https://doi.org/10.1111/j.1740-0929.2012.01056.x
  8. Utilizing food effects to overcome challenges in delivery of lipophilic bioactives: structural design of medical and functional foods vol.10, pp.12, 2013, https://doi.org/10.1517/17425247.2013.837448
  9. Delivery of Lipophilic Bioactives: Assembly, Disassembly, and Reassembly of Lipid Nanoparticles vol.5, pp.1, 2014, https://doi.org/10.1146/annurev-food-072913-100350
  10. Effects of milk proteins on release properties and particle morphology of β-carotene emulsions during in vitro digestion vol.5, pp.11, 2014, https://doi.org/10.1039/C4FO00585F
  11. Excipient foods: designing food matrices that improve the oral bioavailability of pharmaceuticals and nutraceuticals vol.5, pp.7, 2014, https://doi.org/10.1039/C4FO00100A
  12. Functional food microstructures for macronutrient release and delivery vol.6, pp.3, 2015, https://doi.org/10.1039/C4FO00965G
  13. Heat-induced aggregation of thylakoid membranes affect their interfacial properties vol.6, pp.4, 2015, https://doi.org/10.1039/C4FO01074D
  14. Digestion Model vol.81, pp.2, 2015, https://doi.org/10.1111/1750-3841.13196
  15. Effect of Gum Arabic, Gum Ghatti and Sugar Beet Pectin as Interfacial Layer on Lipid Digestibility in Oil-in-Water Emulsions vol.11, pp.3, 2016, https://doi.org/10.1007/s11483-016-9441-8
  16. Influence of Physiological Gastrointestinal Parameters on the Bioaccessibility of Mercury and Selenium from Swordfish vol.64, pp.3, 2016, https://doi.org/10.1021/acs.jafc.5b05046
  17. Helix aspersa gelatin as an emulsifier and emulsion stabilizer: functional properties and effects on pancreatic lipolysis vol.7, pp.1, 2016, https://doi.org/10.1039/C5FO00963D
  18. The role of plant cell wall encapsulation and porosity in regulating lipolysis during the digestion of almond seeds vol.7, pp.1, 2016, https://doi.org/10.1039/C5FO00758E
  19. Enhancement of carotenoid bioaccessibility from carrots using excipient emulsions: influence of particle size of digestible lipid droplets vol.7, pp.1, 2016, https://doi.org/10.1039/C5FO01172H
  20. Effects of cereal soluble dietary fibres on hydrolysis of p-nitrophenyl laurate by pancreatin vol.7, pp.8, 2016, https://doi.org/10.1039/C6FO00383D
  21. β-Carotene Bioaccessibility and Lipid Digestion in Emulsions: Influence of Pectin Type and Degree of Methyl-Esterification vol.81, pp.10, 2016, https://doi.org/10.1111/1750-3841.13408
  22. Role of Phospholipid Flux during Milk Secretion in the Mammary Gland vol.22, pp.2, 2017, https://doi.org/10.1007/s10911-017-9376-9
  23. Dietary exposures for the safety assessment of seven emulsifiers commonly added to foods in the United States and implications for safety vol.34, pp.6, 2017, https://doi.org/10.1080/19440049.2017.1311420
  24. Reactivity of Free Malondialdehyde during In Vitro Simulated Gastrointestinal Digestion vol.65, pp.10, 2017, https://doi.org/10.1021/acs.jafc.7b00053
  25. Effect of dietary bile acids on growth, body composition, lipid metabolism and microbiota in grass carp (Ctenopharyngodon idella) pp.13535773, 2018, https://doi.org/10.1111/anu.12609
  26. Effect of calcium on fatty acid bioaccessibility during in vitro digestion of Cheddar-type cheeses prepared with different milk fat fractions vol.100, pp.4, 2017, https://doi.org/10.3168/jds.2016-11902
  27. Fat digestibility in meat products: influence of food structure and gastrointestinal conditions pp.1465-3478, 2019, https://doi.org/10.1080/09637486.2018.1542665
  28. Digestion of Lipids in Real Foods: Influence of Lipid Organization Within the Food Matrix and Interactions with Nonlipid Components vol.83, pp.10, 2018, https://doi.org/10.1111/1750-3841.14343
  29. Effects of lysolecithin supplementation in low-energy diets on growth performance, nutrient digestibility, viscosity and intestinal morphology of broilers vol.59, pp.2, 2018, https://doi.org/10.1080/00071668.2018.1423676
  30. Characterization of Fatty Acid Digestion of Beijing Fatty and Arbor Acres Chickens vol.20, pp.8, 2005, https://doi.org/10.5713/ajas.2007.1222
  31. Controlling Lipid Bioavailability through Physicochemical and Structural Approaches vol.49, pp.1, 2005, https://doi.org/10.1080/10408390701764245
  32. The influence of emulsion structure and stability on lipid digestion vol.15, pp.1, 2005, https://doi.org/10.1016/j.cocis.2009.11.006
  33. Pancreatin-induced coalescence of oil-in-water emulsions in an in vitro duodenal model vol.20, pp.9, 2010, https://doi.org/10.1016/j.idairyj.2009.12.007
  34. Control of lipase digestibility of emulsified lipids by encapsulation within calcium alginate beads vol.25, pp.1, 2011, https://doi.org/10.1016/j.foodhyd.2010.06.003
  35. Impact of interfacial composition on emulsion digestion and rate of lipid hydrolysis using different in vitro digestion models vol.83, pp.2, 2011, https://doi.org/10.1016/j.colsurfb.2010.12.001
  36. Factors affecting lipase digestibility of emulsified lipids using an in vitro digestion model: Proposal for a standardised pH-stat method vol.126, pp.2, 2005, https://doi.org/10.1016/j.foodchem.2010.11.027
  37. Potential biological fate of ingested nanoemulsions: influence of particle characteristics vol.3, pp.3, 2005, https://doi.org/10.1039/c1fo10193e
  38. In Vitro Gastrointestinal Digestibility of Soybean Oil-in-Water Emulsion Droplets Stabilized by Polyglycerol Esters of Fatty Acid vol.18, pp.2, 2012, https://doi.org/10.3136/fstr.18.149
  39. In vitrolipid digestion of chitinnanocrystal stabilized o/w emulsions vol.4, pp.1, 2005, https://doi.org/10.1039/c2fo30129f
  40. Influence of Ginkgo biloba extracts and of their flavonoid glycosides fraction on the in vitro digestibility of emulsion systems vol.42, pp.1, 2005, https://doi.org/10.1016/j.foodhyd.2014.04.041
  41. Impact of cell wall encapsulation of almonds on in vitro duodenal lipolysis vol.185, pp.None, 2005, https://doi.org/10.1016/j.foodchem.2015.04.013
  42. Encapsulation of curcumin in polysaccharide-based hydrogel beads: Impact of bead type on lipid digestion and curcumin bioaccessibility vol.58, pp.None, 2005, https://doi.org/10.1016/j.foodhyd.2016.02.036
  43. Solid-in-Oil-in-Water Emulsions for Delivery of Lactase To Control in Vitro Hydrolysis of Lactose in Milk vol.65, pp.43, 2005, https://doi.org/10.1021/acs.jafc.7b03787
  44. Fish oil, lard and soybean oil differentially shape gut microbiota of middle-aged rats vol.7, pp.None, 2005, https://doi.org/10.1038/s41598-017-00969-0
  45. Impact of Delivery System Type on Curcumin Bioaccessibility: Comparison of Curcumin-Loaded Nanoemulsions with Commercial Curcumin Supplements vol.66, pp.41, 2005, https://doi.org/10.1021/acs.jafc.8b03174
  46. Calcium Alters the Interfacial Organization of Hydrolyzed Lipids during Intestinal Digestion vol.34, pp.25, 2018, https://doi.org/10.1021/acs.langmuir.8b00841
  47. In Vitro Gastrointestinal Digestibility of Crystalline Oil-in-Water Emulsions: Influence of Fat Crystal Structure vol.67, pp.3, 2005, https://doi.org/10.1021/acs.jafc.8b04287
  48. In Vitro Study for Lipolysis of Soybean Oil, Pomegranate Oil, and Their Blended and Interesterified Oils under a pH-Stat Model and a Simulated Model of Small Intestinal Digestion vol.11, pp.3, 2019, https://doi.org/10.3390/nu11030678
  49. Effect of Maltodextrin and Temperature on Micellar Behavior of Bile Salts in Aqueous Medium: Conductometric and Spectrofluorimetric Studies vol.233, pp.8, 2005, https://doi.org/10.1515/zpch-2017-1060
  50. Development of Next-Generation Nutritionally Fortified Plant-Based Milk Substitutes: Structural Design Principles vol.9, pp.4, 2005, https://doi.org/10.3390/foods9040421
  51. Effect of calcium stearoyl-2 lactylate and lipase supplementation on growth performance, gut health, and nutrient digestibility of broiler chickens vol.33, pp.6, 2005, https://doi.org/10.5713/ajas.19.0595
  52. In Vitro Gastrointestinal Digestion of Palm Olein and Palm Stearin-in-Water Emulsions with Different Physical States and Fat Contents vol.68, pp.26, 2005, https://doi.org/10.1021/acs.jafc.0c00212
  53. Nanostructure generation during milk digestion in presence of a cell culture model simulating the small intestine vol.574, pp.None, 2005, https://doi.org/10.1016/j.jcis.2020.04.059
  54. INFLUENCE OF MILK PROTEIN COMPOSITION ON PHYSICOCHEMICAL AND MICROSTRUCTURAL CHANGES OF SONO-EMULSIONS DURING IN VITRO DIGESTION vol.26, pp.None, 2005, https://doi.org/10.1016/j.foostr.2020.100157
  55. In vitrogastrointestinal digestibility of phytosterol oleogels: influence of self-assembled microstructures on emulsification efficiency and lipase activity vol.11, pp.11, 2005, https://doi.org/10.1039/d0fo01642j
  56. Antimicrobial peptides as an additive in broiler chicken nutrition: a meta-analysis of bird performance, nutrient digestibility and serum metabolites vol.30, pp.2, 2005, https://doi.org/10.22358/jafs/136400/2021
  57. In vitro Assessment of Chemical and Pre-biotic Properties of Carboxymethylated Polysaccharides From Passiflora edulis Peel, Xylan, and Citrus Pectin vol.8, pp.None, 2021, https://doi.org/10.3389/fnut.2021.778563
  58. Invitro digestion and absorption efficiency of homogenised milk lipids vol.74, pp.1, 2005, https://doi.org/10.1111/1471-0307.12723
  59. In vitro hepatic steatosis model based on gut-liver‐on‐a‐chip vol.37, pp.3, 2021, https://doi.org/10.1002/btpr.3121
  60. Supplemental effects of fish oil and powdered/coated docosahexaenoic acid on the growth performance, nutrient digestibility, blood profile and fecal coliform and lactic acid bacteria counts in weaner vol.275, pp.None, 2005, https://doi.org/10.1016/j.anifeedsci.2021.114885
  61. Impact of Protein-Enriched Plant Food Items on the Bioaccessibility and Cellular Uptake of Carotenoids vol.10, pp.7, 2005, https://doi.org/10.3390/antiox10071005
  62. Slow digestion‐oriented dietary strategy to sustain the secretion of GLP‐1 for improved glucose homeostasis vol.20, pp.5, 2021, https://doi.org/10.1111/1541-4337.12808
  63. A Comprehensive Review of the Composition, Nutritional Value, and Functional Properties of Camel Milk Fat vol.10, pp.9, 2005, https://doi.org/10.3390/foods10092158
  64. Lipopolysaccharide Nanosystems for the Enhancement of Oral Bioavailability vol.22, pp.7, 2021, https://doi.org/10.1208/s12249-021-02124-5
  65. Improving resveratrol bioavailability using water-in-oil-in-water (W/O/W) emulsion: Physicochemical stability, in vitro digestion resistivity and transport properties vol.87, pp.None, 2005, https://doi.org/10.1016/j.jff.2021.104717
  66. The Impact of COVID-19 on Eating Environments and Activity in Early Childhood Education and Care in Alberta, Canada: A Cross-Sectional Study vol.13, pp.12, 2021, https://doi.org/10.3390/nu13124247
  67. Explore Gastric Lipolysis and Lipid Oxidation of Conventional versus Pasture-Based Milk by a Semi-dynamic In Vitro Digestion Model vol.69, pp.47, 2005, https://doi.org/10.1021/acs.jafc.1c03150
  68. Design of soy protein/peptide-based colloidal particles and their role in controlling the lipid digestion of emulsions vol.43, pp.None, 2005, https://doi.org/10.1016/j.cofs.2021.10.003