DOI QR코드

DOI QR Code

Comparative Study of Enzyme Activity and Stability of Bovine and Human Plasmins in Electrophoretic Reagents, β-mercaptoethanol, DTT, SDS, Triton X-100, and Urea

  • Choi, Nack-Shick (Proteome Research Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Hahm, Jeung-Ho (Proteome Research Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Maeng, Pil-Jae (Department of Microbiology, Chungnam National University) ;
  • Kim, Seung-Ho (Proteome Research Laboratory, Korea Research Institute of Bioscience and Biotechnology)
  • Published : 2005.03.31

Abstract

Effects of common electrophoretic reagents, reducing agents ($\beta$-mercaptoethanol [BME] and DTT), denaturants (SDS and urea), and non-ionic detergent (Triton X-100), on the activity and stability of bovine plasmin (b-pln) and human plasmin (h-pln) were compared. In the presence of 0.1% SDS (w/v), all reagents completely inhibited two plns, whereas SDS (1%) and urea (1 M) denatured plns recovered their activities after removal of SDS by treatment of 2.5% Triton X-100 (v/v). However, reducing agents (0.1 M of BME and DTT) treated plns did not restore their activities. Based on a fibrin zymogram gel, five (from b-pln) and four (from h-pln) active fragments were resolved. Two plns exhibited unusual stability in concentrated SDS and Triton X-100 (final 10%) and urea (final 6 M) solutions. Two bands, heavy chain-2 (HC-2) and cleaved heavy chain-2 (CHC-2), of b-pln were completely inhibited in 0.5% SDS or 3 M urea, whereas no significant difference was found in h-pln. Interestingly, 50 kDa (cleaved heavy chain-1, CHC-1) of b-pln and two fragments, 26 kDa (light chain, LC) and 29 kDa (microplasmin, MP), of h-pln were increased by SDS in a concentration dependent manner. We also found that the inhibition of SDS against both plns was reversible.

Keywords

References

  1. Astrup, T. and Müllertz, S. (1952) The fibrin plate method for estimating fibrinolytic activity. Arch. Biochem. Biophys. 40, 346-351 https://doi.org/10.1016/0003-9861(52)90121-5
  2. Bischoff, K. M., Shi, L. and Kennelly, P. J. (1998) The detection of enzyme activity following sodium dodecyl sulfatepolyacrylamide gel electrophoresis. Anal. Biochem. 260, 1-17 https://doi.org/10.1006/abio.1998.2680
  3. Chakrabarty, S. (1989) Fibrin solubilizing properties of certain anionic and cationic detergents. Thrombosis Res. 55, 511-519 https://doi.org/10.1016/0049-3848(89)90059-5
  4. Choi, N. S., Kim, B. Y., Lee, J. Y., Yoon, K. S., Han, K. Y. and Kim, S. H. (2002) Relationship between acrylamide concentration and enzymatic activity in an improved single fibrin zymogram gel system. J. Biochem. Mol. Biol. 35, 236- 238 https://doi.org/10.5483/BMBRep.2002.35.2.236
  5. Choi, N. S. and Kim, S. H. (2000) Two fibrin zymography methods for analysis of plasminogen activators on gels. Anal. Biochem. 281, 236-238 https://doi.org/10.1006/abio.2000.4572
  6. Erickson, L. A., Heckman, C. M. and Loskutoff, D. J. (1986) Denaturant-induced stimulation of the beta-migrating plasminogne activator inhibitor in endothelial cells and serum. Blood 68, 1298-1305
  7. Haas, R. and Culp, L. A. (1984) Binding of fibronectin to gelatin and heparin: effect of surface denaturation and detergents. FEBS Letts. 174, 279-283 https://doi.org/10.1016/0014-5793(84)81173-4
  8. Han, X. Q. and Damodaran, S. (1997) Stability of protease Q against autolysis and in sodium dodecyl sulfate and urea solutions. Biochem. Biophys. Res. Commun. 240, 839-843 https://doi.org/10.1006/bbrc.1997.7698
  9. Kim, S. H. and Choi, N. S. (1998) Fibrin zymography: a direct analysis of fibrinolytic enzymes on gels. Anal. Biochem. 263, 115-116 https://doi.org/10.1006/abio.1998.2816
  10. Kruithof, E. K. O., Ransijn, A. and Bachmann, F. (1982) Influence of detergents on the measurement of the fibrinolytic activity of plasminogen activators. Thrombosis Res. 28, 251- 260 https://doi.org/10.1016/0049-3848(82)90266-3
  11. Lambers, J. W., Cammenga, M., Konig, B. W., Mertens, K., Pannekoek, H. and Van Mourik, J. A. (1987) Activation of human endothelial cell-type plasminogne activator inhibitor (PAI-1) by negatively charged phospholipids. J. Biol. Chem. 260, 11581-11587
  12. Lantz, M. S. and Ciborowski, P. (1994) Zymographic techniques for detection and characterization of microbial proteases. Methods Enzymol. 235, 563-594 https://doi.org/10.1016/0076-6879(94)35171-6
  13. Marti, T., Schaller, J. and Rickli, E. E. (1985) Determination of the complete amino-acid sequence of porcine miniplasminogen. Eur. J. Biochem. 149, 279-285 https://doi.org/10.1111/j.1432-1033.1985.tb08923.x
  14. Mendelsohn, S. L. and Young, D. A. (1978) Efficacy of sodium dodecyl sulfate, diethyl pyrocarbonate, proteinase K and heparin using a sensitive ribonuclease assay. Biochim. Biophys. Acta 519, 461-473 https://doi.org/10.1016/0005-2787(78)90099-0
  15. Reza, D. M., Akbar, M. A., Parviz, N., Hedayat-Olah, G. and Shahrokh, S. (2002) Inhibition of human hemoglobin autoxidation by sodium n-dodecyl sulphate. J. Biochem. Mol. Biol. 35, 364-370 https://doi.org/10.5483/BMBRep.2002.35.4.364
  16. Schaller, J., Moser, P. W., Dannegger-Müller, G. A. K., Rösselet, S. J., Kämpfer, U. and Rickli, E. E. (1985) Complete amino acid sequence of bovine plasminogen: comparison with human plasminogen. Eur. J. Biochem. 149, 287-278 https://doi.org/10.1111/j.1432-1033.1985.tb08925.x
  17. Tang, J., Esmon, N., Ferlan, I. and Fesmire, A. (1981) The enhancement of streptokinase activation of plasminogen by nonionic detergents and by serum albumin. Thrombosis Res. 24, 359-365 https://doi.org/10.1016/0049-3848(81)90009-8
  18. Wu, H. L., Shi, G. Y. and Bender, M. L. (1987a) Preparation and purification of microplasmin. Proc. Natl. Acad. Sci. USA 84, 8292-8295 https://doi.org/10.1073/pnas.84.23.8292
  19. Wu, H. L., Shi, G. Y., Wohl, R. C. and Bender, M. L. (1987b) Structure and formation of microplasmin. Proc. Natl. Acad. Sci. USA 84, 8793-8795 https://doi.org/10.1073/pnas.84.24.8793
  20. Wulf, R. J. and Mertz, E. T. (1969) Studies on plasminogen. 8. Species specificity of streptokinase. Can. J. Biochem. 47, 927- 931 https://doi.org/10.1139/o69-145
  21. Yang, J. S. and Ru, B. G. (1997) Purification and characterization of an SDS-activated fibrinolytic enzyme from Eisenia fetida. Comp. Biochem. Physiol. 118, 623-631 https://doi.org/10.1016/S0305-0491(97)00223-X

Cited by

  1. A two-stage spin cartridge for integrated protein precipitation, digestion and SDS removal in a comparative bottom-up proteomics workflow vol.118, 2015, https://doi.org/10.1016/j.jprot.2014.09.030
  2. A novel human microplasmin fold: new perspective to thrombosis treatment vol.22, pp.3, 2011, https://doi.org/10.1097/MBC.0b013e3283425498
  3. Thermodynamics of Chitinase Partitioning in Soy Lecithin Liposomes and Their Storage Stability vol.165, pp.7-8, 2011, https://doi.org/10.1007/s12010-011-9381-1
  4. Microfluidic integration of Western blotting is enabled by electrotransfer-assisted sodium dodecyl sulfate dilution vol.138, pp.1, 2013, https://doi.org/10.1039/C2AN36033K
  5. Purification, characterization and kinetics of protease inhibitor from fruits of Solanum aculeatissimum Jacq vol.4, pp.3, 2015, https://doi.org/10.1016/j.fshw.2015.06.003
  6. Glycolaldehyde induces fibrinogen post-translational modification, delay in clotting and resistance to enzymatic digestion vol.180, pp.3, 2009, https://doi.org/10.1016/j.cbi.2009.04.005
  7. Activity of Bacillus polymyxa protease on components of the plasmin system in milk vol.16, pp.6, 2006, https://doi.org/10.1016/j.idairyj.2005.09.020
  8. Antibody microarray-based profiling of complex specimens: systematic evaluation of labeling strategies vol.7, pp.11, 2007, https://doi.org/10.1002/pmic.200600762
  9. Mapping and characterization of antigenic epitopes of arginine kinase of Scylla paramamosain vol.65, pp.2, 2015, https://doi.org/10.1016/j.molimm.2015.02.010
  10. Production and Characterization of Alkaline Protease of Micrococcus sp. PS-1 Isolated from Seawater vol.23, pp.2, 2013, https://doi.org/10.5352/JLS.2013.23.2.273