Effects of Catalysts and Blowing Agents on the Physical Properties and Cell Morphology of Polyurethane Foams

폴리우레탄 폼의 물성과 Cell Morphology에 대한 촉매와 발포제의 영향

  • 권현 ((주)파인텍 연구소) ;
  • 이수헌 ((주)파인텍 연구소) ;
  • 김상범 (경기대학교 화학공학전공) ;
  • 방문수 (공주대학교 화학공학부) ;
  • 김연철 (공주대학교 화학공학부)
  • Received : 2005.01.05
  • Accepted : 2005.03.14
  • Published : 2005.06.10

Abstract

Polyurethane foams (PUFs) were prepared from polymeric 4,4'-diphenylmethane diisocyanate (PMDI), seven polyols with different functionalities and OH values, silicone surfactant, two catalysts, and three blowing agents. Chlorofluorocarbon (CFC-11), hydrochlorofluorocarbon (HCFC-141b) and hydrofluorocarbon (HFC-365mfc) were used as blowing agents. The effect of gelling and blowing catalysts on basic properties and cell structure of PUF with HCFC-141b was investigated. The cell size of the PUF decreased with an increase in the amount of catalyst from 0 to 2 pph (parts per hundred polyol). In the case of gelling type catalyst, the compressive strength increased from 11.9 to $12.66kg_f/cm^2$ with an increase in the amount catalyst from 0 to 2 pph but the density did not change significantly. The gelling time, density, and compressive strength of the PUF with three different blowing agents were measured. There was no detectable change in their properties. However, the cell structure of PUF with HCFC-141b was not uniform as in the other systems.

Polymeric 4,4'-diphenylmethane diisocyanate (PMDI), 여러 관능기와 OH 값을 가지는 7종의 폴리올, 실리콘 계면활성제, 두 종류의 촉매 그리고 세 종류의 발포제를 사용하여 폴리우레탄폼(PUF)을 제조하였다. 발포제로는 염화불화탄소(CFC-11), 염화불화탄화수소(HCFC-141b)와 불화탄화수소(HFC-365mfc)가 이용되었다. HCFC-141b를 사용한 PUF의 기초특성과 cell 구조에 대한 겔화촉매와 blowing 촉매의 영향을 조사하였다. Cell 크기는 촉매의 양에 따라 감소하였다. 겔화촉매의 경우에 밀도 변화는 거의 없지만 압축강도는 촉매양이 0에서 2 pph로 증가함에 따라 11.9에서 $12.66kg_f/cm^2$로 증가하였다. 3 종의 발포제를 이용한 PUF의 겔화시간, 밀도와 압축강도를 측정하였으며, 물리적 특성에 있어서는 큰 차이를 나타내지 않았다. 그러나 다른 두 종류의 발포계와 비교했을 때 HCFC-141b를 사용한 PUF의 cell 구조는 불균일함을 알 수 있었다.

Keywords

References

  1. T. Y. Lee, H. S. Lee, and S. W. Seo, Polym. Sci. Tech., 10, 597 (1999)
  2. E. N. Doyle, The Development and Use of Polyurethane Products, McGraw-Hill Book Company, New York (1984)
  3. H. Fleurent and S. Thijs, J. Cell. Plast., 31, 580 (1995) https://doi.org/10.1177/0021955X9503100606
  4. P. A. Gunatillake, G. F. Meijs, and E. Rizzardo, J. Appl. Polym. Sci., 47, 199 (1993) https://doi.org/10.1002/app.1993.070470202
  5. H. S. Lee, N. W. Lee, K. H. Paik, and D. W. Ihm, Macromolrcules, 27, 4364 (1994)
  6. S. A. Baser and D. V. Khakhar, Polym. Eng. Sci., 34, 642 (1994) https://doi.org/10.1002/pen.760340805
  7. M. Ravey, Pearce, and M. Eli, J. Appl. Polym. Sci., 63, 47 (1997) https://doi.org/10.1002/(SICI)1097-4628(19970103)63:1<47::AID-APP7>3.0.CO;2-S
  8. J. Sharpe, D. MacArthur, M. Liu, T. Kollie, R. Graves, and R. Hendriks, J. Cell. Plast., 31, 313 (1995) https://doi.org/10.1177/0021955X9503100402
  9. T. L. Fishback and C. J. Reichel, J. Cell. Plast., 30, 84 (1994) https://doi.org/10.1177/0021955X9403000105
  10. O. Volkert, Adv. Urethane Sci. Tech., 13, 53 (1996)
  11. J. A. Creazzo, H. S. Hammel, K. J. Cicalo, and P. Schindler, J. Cell. Plast., 31, 154 (1995)
  12. O. Volkert, J. Cell. Plast., 31, 210 (1995) https://doi.org/10.1177/0021955X9503100302
  13. W. J. Seo, H. C. Jung, Y. H. Kim, W. N. Kim, K. H. Choe, Y. B. Lee, and S. H. Choi, Polymer(Korea), 26, 185 (2002)
  14. U. S. patent 4,598,103 (1985)
  15. Michael Szycher, Szycher's Handbook of Polyurethanes, CRC Press, Florida (1999)
  16. J. A. Thoen, H. J. M. Grunbauer, and C. F. Smits, Polym. Mater. Sci. Eng., 67, 467 (1992)
  17. P. P. Barthelemy, A. Leroy, and J. A. Franklin, J. Cell. Plast., 31, 513 (1995) https://doi.org/10.1177/0021955X9503100602