Esterification of Lactic Acid with Alcohols

젓산과 알코올간의 에스테르화 반응

  • Kim, Jong-Hwa (Department of Chemical and Bioengineering, Kyungwon University) ;
  • Han, Jee-Yeun (Department of Chemical and Bioengineering, Kyungwon University) ;
  • Lee, Sang-Wha (Department of Chemical and Bioengineering, Kyungwon University)
  • 김종화 (경원대학교 화학생명공학과) ;
  • 한지윤 (경원대학교 화학생명공학과) ;
  • 이상화 (경원대학교 화학생명공학과)
  • Received : 2004.11.12
  • Accepted : 2005.01.13
  • Published : 2005.04.10

Abstract

Esterification of lactic acid with alcohols catalyzed by Amberlyst-type ion exchange resins and sulfuric acid was carried out in a batch reactor with total /or partial recycle of distilled condensates, respectively. The esterification of lactic acid in the total-recycling reactor (n-butanol/lactic acid = 4, $100^{\circ}C$) was promoted by decreasing the residual water and increasing the mole ratio of n-butanol/lactic acid. Also, it was confirmed that methanol with simple structure and tert-butanol with superior substitution reactivity were more effective in increasing the conversion of esterification reaction, compared to ethanol, n-butanol, and iso-butanol. In a partial-recycling reactor (n-butanol/ammonium lactate = 4, $115^{\circ}C$), the conversion of ammonium lactate into butyl lactate with 1.0 wt% Amberyst-type resins was higher in comparison to that with 0.2 mol $H_2SO_4$ (per 1.0 mol ammonium lactate). The esterification was gradually occurred during the initial stage of reaction in the presence of solid catalyst, whereas the initial addition of $H_2SO_4$ did not affect the initial rate of esterification reaction because of ammonium sulfate formation by the neutralizing reaction of ammonium lactate with sulfuric acid.

회분식/순환식증류 반응시스템에서 Amberlyst 이온교환수지와 황산의 첨가에 따른 젓산의 에스테르화 반응을 고찰하였다. 회분식증류 반응시스템에서는(n-butanol/lactic acid = 4, $100^{\circ}C$) 물의 함유량이 적을수록, n-butanol/lactic acid의 몰비가 증가할수록 에스테르화 전환율이 높게 나타났다. 알코올의 종류에 따른 에스테르화 전환율을 비교 해본 결과 단순한 구조의 메탄올과 치환반응성이 뛰어난 tert-부탄올이 에탄올, n-부탄올, iso-부탄올에 비해 치환 반응에 의한 에스테르화 전환율이 높은 것으로 나타났다. 지속적으로 물을 제거하는 순환식증류 반응 시스템에서는 (n-butanol/ammonium lactate = 4, $115^{\circ}C$) Amberyst-15 고체산 촉매를 사용한 경우가 황산촉매를 사용한 경우보다 에스테르반응 전환율이 높게 나타났다. 고체산 촉매를 반응초기에 투입한 경우에는 에스테르 반응이 지속적으로 진행되었으나 황산촉매의 경우에는 초기단계의 반응속도에는 영향을 미치지 않는 것으로 나타났다. 이는 반응 초기에 투입한 황산이 ammonium lactate간의 반응을 통해 ammonium sulfate를 생성하는 중화반응에 우선적으로 참여하기 때문인 것으로 사료된다.

Keywords

References

  1. M. Okamoto, J. Ind. Eng. Chem., 10, 1156 (2004)
  2. K. H. Kwun, W. S. Cha, J. W. Nah, and D. B. Lee, J. Korean Ind. Eng. Chem., 12, 148 (2001)
  3. G. C. Inskeep, G. G. Taylor, and W. C. Breitzke, Industrial and Engineering Chemistry, 44, 1955 (1952) https://doi.org/10.1021/ie50513a016
  4. E. K. Lee, Recovery of lactic acid from fermentation broth using electrodialysis, KAIST Ph.D. Thesis (1998)
  5. J. I. Choi and W. H. Hong, Korean J. Biotechnol. Bioeng., 14, 220 (1999)
  6. C. H. Kwon and Y. C. Lee, J. Korean Ind. Eng. Chem., 11, 561 (2000)
  7. C. Akerberg and G. Zacchi, Bioresource Technology, 75, 119 (2000) https://doi.org/10.1016/S0960-8524(00)00057-2
  8. C. M. Cockrem, Recovery of lactate esters and lactic acid from fermentation broth, US patent, 5,210,296 (1993)
  9. Y. Seo and W. H. Hong, J. Chemical Engineering of Japan, 33, 128 (2000) https://doi.org/10.1252/jcej.33.128
  10. E. M. Filachione and E. J. Costello, Industrial and Engineering Chemistry, 44, 2189 (1952) https://doi.org/10.1021/ie50513a057
  11. K. Akira, A. Tomohiro, T. Masaaki, and M. Shigenobu, Production of lactic Acid and Lactic Ester, JP311886A (1994)
  12. E. M. Filachione and C. H. Fischer, Ind. Eng. Chem., 38, 228 (1946) https://doi.org/10.1021/ie50434a029
  13. S. Dassy, H. Wiame, and F. C. Thyrion, J. Chem. Tech. Biotechnol., 59, 149 (1994) https://doi.org/10.1002/jctb.280590206
  14. A. Chakrabarti and M. M. Sharma, Reactive Polymer, 20, 1 (1993) https://doi.org/10.1016/0923-1137(93)90064-M
  15. J. A. Sinegra and G. Carta, Ind. Eng. Chem. Res., 26, 2437 (1987) https://doi.org/10.1021/ie00072a008
  16. R. A. Troupe and K. A. Kobe, Analytical Chemistry, 22, 545 (1950) https://doi.org/10.1021/ac60040a009
  17. T. W. Graham Solomons, Organic Chemistry. 2nd Ed., Jolm Wiley & Sons, Inc., 609-611, New York (1976)
  18. J. I. Choi, W. H. Hong, and H. N. Chang, International Journal of Chemical Kinetics, 28, 37 (1996) https://doi.org/10.1002/(SICI)1097-4601(1996)28:1<37::AID-KIN5>3.0.CO;2-N
  19. O. N. Tsvetkova and K. D. Kovenev, Int. J. Chem. Eng., 7, 107 ( 1967)
  20. R. Thornton and B. C. Gates, J. Catal., 34, 275 (1974) https://doi.org/10.1016/0021-9517(74)90037-2
  21. R. Roy and S. Bhatia, J. Chem. Tech. Biotechnol., 37, 1 (1987)