DOI QR코드

DOI QR Code

Mitigation of Methane Emission and Energy Recycling in Animal Agricultural Systems

  • Takahashi, J. (Department of Animal Science, Obihiro University of Agriculture and Veterinary Medicine) ;
  • Mwenya, B. (Department of Animal Science, Obihiro University of Agriculture and Veterinary Medicine) ;
  • Santoso, B. (Department of Animal Science, Obihiro University of Agriculture and Veterinary Medicine) ;
  • Sar, C. (Department of Animal Science, Obihiro University of Agriculture and Veterinary Medicine) ;
  • Umetsu, K. (Department of Animal Science, Obihiro University of Agriculture and Veterinary Medicine) ;
  • Kishimoto, T. (Department of Animal Science, Obihiro University of Agriculture and Veterinary Medicine) ;
  • Nishizaki, K. (Department of Animal Science, Obihiro University of Agriculture and Veterinary Medicine) ;
  • Kimura, K. (Yakult Central Institute for Microbiological Research) ;
  • Hamamoto, O. (Mitsui Engineering and Shipbuilding Co., Ltd.)
  • Published : 2005.08.01

Abstract

Abatement of greenhouse gas emitted from ruminants and promotion of biogas energy from animal effluent were comprehensively examined in each anaerobic fermentation reactor and animal experiments. Moreover, the energy conversion efficiency of biomass energy to power generation were evaluated with a gas engine generator or proton exchange membrane fuel cell (PEMFC). To mitigate safely rumen methanogenesis with nutritional manipulation the suppressing effects of some strains of lactic acid bacteria and yeast, bacteriocin, $\beta$1-4 galactooligosaccharide, plant extracts (Yucca schidigera and Quillaja saponarea), L-cysteine and/or nitrate on rumen methane emission were compared with antibiotics. For in vitro trials, cumulative methane production was evaluated using the continuous fermented gas qualification system inoculated with the strained rumen fluid from rumen fistulated Holstein cows. For in vivo, four sequential ventilated head cages equipped with a fully automated gas analyzing system were used to examine the manipulating effects of $\beta$1-4 galactooligosaccharide, lactic acid bacteria (Leuconostoc mesenteroides subsp. mesenteroides), yeast (Trichosporon serticeum), nisin and Yucca schidigera and/or nitrate on rumen methanogenesis. Furthermore, biogas energy recycled from animal effluent was evaluated with anaerobic bioreactors. Utilization of recycled energy as fuel for a co-generator and fuel cell was tested in the thermophilic biogas plant system. From the results of in vitro and in vivo trials, nitrate was shown to be a strong methane suppressor, although nitrate per se is hazardous. L-cysteine could remove this risk. $\beta$1-4 galactooligosaccharide, Candida kefyr, nisin, Yucca schidigera and Quillaja saponarea are thought to possibly control methanogenesis in the rumen. It is possible to simulate the available energy recycled through animal effluent from feed energy resources by making total energy balance sheets of the process from feed energy to recycled energy.

Keywords

References

  1. Adachi, J., S. Obayashi, K. Kusumura, K., Umetsu and K. Nishizaki. 2002. Demonstration and evaluation of the PEMFC generator fueled by biogas from livestock manure, Fuel Cell Seminar, pp. 316-319.
  2. Allison, M. J., C. A. Reddy and H. M. Cook. 1981. The effects nitrate and nitrite on VFA and $CH_4$ production by ruminal microbes. J. Anim. Sci. 53(Suppl. 1):391(Abstract).
  3. Allison, M. J. and C. A. Reddy. 1984. In: Current Perspectives in Microbial Ecology. (Ed. M J. Kelly and C. A. Reddy). Washington, DC: American Society for Microbiology, pp. 248-256.
  4. Belaich, J. P., M. Bruschi and J. L. Garcia. 1990. Microbiology and Biochemistry of Strict Anaerobes Involved in Interspecies Hydrogen Transfer. Plenum Press, New York, NY.
  5. Chen, M. and M. J. Wolin. 1979. Effect of monensin and lasalocid-sodium on the growth of methanogenic and rumen saccharolytic bacteria. Appl. Environ. Microbiol. 38:72-77.
  6. Chalupa, W. 1984. Manipulation of rumen fermentation. In: Recent Advances in Animal Nutrition. (Ed. W. Haresign and D. Cole). Butterworths, London, England, pp. 143-160.
  7. Dimarco, A. A., T. A. Bobik and R. S. Wolf. 1990. Unusual coenzymes of methanogenesis. Annu. Rev. Biochem. 59:355-394.
  8. Fallon, R. J. and F. J. Harte. 1987. The effects of yeast culture inclusion in the concentrate diet on calf performance. J. Dairy Sci. 70(Suppl. 1):143(Abstr.).
  9. Gerald, W. H. and S. L. Keith. 1984. Preliminary studies on the effect of yeast culture supplementation on nitrate/nitrite induced methemoglobinemia in lambs and steers. Vet. Hum. Toxicol. 26:309-313.
  10. Gomez-Alarcon, R., C. Dudas and J. T. Huber. 1987. Effects of Aspergillus oryzae and yeast on feed utilization by Holstein cows. J. Dairy Sci. 70(Suppl.1):218(Abstr.).
  11. Grieve, D. G. 1979. Feed intake and growth of cattle fed liquid brewer’s yeast. Can. J. Anim. Sci. 59:89.
  12. Harinder, P. S. M., S. Sen, M. Blummel and K. Becker. 1998. Effects of fractions containing saponins from Yucca schidigera, Quillaja saonaria and Acacea auriculoformis on rumen fermentation. J. Agric. Food Chem. 46:4324-4328.
  13. Harrison, G. A., R. W. Hemken, K. A. Dawson, R. J. Harmon and K. B. Barker. 1988. Influence of addition of yeast culture supplement to diets of lactating dairy cows on ruminal function and microbial populations. J. Dairy Sci. 71:2967.
  14. Hegarty, R. S. and R. Gerdes. 1999. Hydrogen production and transfer in the rumen. Recent Advances in Animal Nutrition in Australia. 12:37-44.
  15. Hristov, A. N., T. A. McAllister, F. H. Van Herk, K.-J. Cheng, C. J. Newbold and P. R. Cheeke. 1999. Effect of Yucca schidigera extract on rumen fermentation and nurtrient digestion in heifers. J. Anim. Sci. 77:2554-2563.
  16. Hopgood, M. F. and D. J. Walker. 1967. Succinic acid production by rumen bacteria. II. Radioisotope studies on succinateproduction by Ruminococcus flavefaciens. Aust. J. Biol. Sci. 20:183-192.
  17. Houghton, J. 1994. Global warming. Lion Publishing plc. Oxford, pp. 29-45.
  18. Hoyos, G., L. Garcia and F. Medina. 1987. Effects of feeding viable microbial feed additives on performance of lactating cows in a large dairy herd. J. Dairy Sci. 70(Suppl. 1):217 (Abstr.).
  19. Hussain, I. and P. R. Cheeke. 1995. Effect of dietary yucca schidigera extract on rumen and blood profiles of steers fed concentrate or roughage based diets. Anim. Feed Sci. Tech. 51:231-242. https://doi.org/10.1016/0377-8401(94)00694-5
  20. IPCC (Intergovermental Panel on Climate Change). 1994. (Ed. J. H. Houghton, L. G. Meria Filho, J. Bruce, L. Hoesung, B. A. Callander, H. Haites, N. Harris and K. Maskell). Cambridge University Press. New York. pp. 25-27.
  21. Jones, G. A. 1972. Dissimilatory metabolism of nitrate by the rumen microbiota. Can. J. Microbiol. 18:1783-1987. https://doi.org/10.1139/m72-279
  22. Jamieson, N. D. 1958. Adverse effect of nitrate metabolic products on sheep growth. Nature 181:1601-1602. https://doi.org/10.1038/1811601a0
  23. Kil, J. Y., N. K. Cho, B. S. Kim, S. R. Lee and W. J. Maeng. 1994. Effects of Yucca extract addition on the in vitro fermentation characteristics of feed and feces, and on the milk yields in lactating cows. J. Anim. Sci. 36:698-709.
  24. Klieve, A. V. and R. S. Hegarty. 1999. Opportunities of biological control of ruminant methanogenesis. Aust. J. Agric. Res. 50:1315-19.
  25. Korzeniowski, A., J. H. Geurink and A. Kemp. 1981. Nitrate poisoning in cattle. 6. Tungsten (wolfram) as a prophylactic against nitrate-nitrite intoxication in ruminants. Neth. J. Agric. Sci. 29:37- 47.
  26. Leng, R. A. 1991. Improving ruminant production and reducing methane emissions from ruminants by strategic supplementation. EPA/400/1-91/004, US Environmental Protection Agency, Washington, DC, pp. 6-10.
  27. Leng, R. A. 1991. Improving ruminant production and reducing methane emissions from ruminants by strategic supplementation. EPA/400/1-91/004, US Environmental Protection Agency, Washington, DC, pp. 6-10.
  28. Marais, J. P., J. Therion, I. Mackie, A. Kistner and C. D. Dennisoson. 1988. Effect of nitrate and its reduction products on the growth and activity of the rumen microbial population. Br. J. Nutr. 59:301-313.
  29. Martin, S. A., D. J. Nisbet and R. G. Dean. 1989. Influence of a commercial yeast supplement on the in vitro ruminal fermentation. Nutr. Rep. Int. 40:395.
  30. McDougall, E. I. 1948. Studies on ruminant saliva, 1. The composition and output of sheeps saliva. Biochem. J. 43:99-109.
  31. Metzler, D. E. 1977. The chemical reactions of living cells. Biochemistry, Academic Press, New York, p. 808.
  32. Miller, T. L. 1995. Ecology of methane production and hydrogen sinks in the rumen. In: Ruminant Physiology; Digestion, Metabolism, Growth and Reproduction, (Ed. W. V. Engelhardt). Enke, Stuttgard, Germany. pp. 317-331.
  33. Moss, A. R. 1993. Methane: Global Warming and Production by Animals. Chalcombe, Canterbury, UK. p. 105.
  34. Ohtsuka, K., K. Tsuji, Y. Nakagawa, H. Ueda, O. Ozawa, T. Uchida and T. Ichikawa. 1990. Availability of 4`-galactosyllactose (ο-beta-D-galactopyranosyl- (1-4)-ο-beta-Dgalactospyranosyl-(1-4)-D-glucopyranose) in rat. J. Nutr. Sci. Vitaminol, 36:265-276.
  35. Phillips, W. A. and D. L. VonTungeln. 1985. The effects of yeast culture on the posstress performance of feeder calves. Nutr. Rep. Int. 32:287.
  36. Prins, R. A., W. Cline-Theil, A. Malestein and G. H. M. Counotte. 1980. Inhibition of nitrate reduction in some rumen bacteria by tungstate. Appl. Environ. Microbiol. 49:163-165.
  37. Ruf, E. W., W. H. Hale and W. Burroughs. 1953. Observations upon an unidentified factor in feed stuffs stimulatory to cellulose digestion in the rumen and improved live weight gains in lambs. J. Anim. Sci. 12:731.
  38. Sar, C., B. Santoso, Y. Gamo, Y. Kobayashi, S. Shiozaki, K. Kimura, H. Mizukoshi, I. Arai and J. Takahashi. 2004. Effects of combination of nitrate with $\beta$1-4galacto-Oligo-saccharides and yeast (Candida kefyr) on methane emission from sheep. Asian-Aust. J. Anim. Sci. 17:73-79.
  39. Sako, T., K. Matsumoto and R. Tanaka. 1999. Recent progress on research and applications of non-digestible galactooligosaccharides. Inter. Dairy J. 9:69-80.
  40. Stewart, C. S. and M. P. Bryant. 1988. In: The rumen bacteria in The Rumen Microbial Ecosystem. (Ed. P. N. Hobson). Elsevier Appl. Sci. New York, NY. pp. 21-75.
  41. Stone, C. W. 1974, 1976. Yeast culture research briefs, Diamond V Mills, Inc, Cedar Rapids, IA.
  42. Streeter, C. L., G. W. Horn and J. E. McClung. 1981. Yeast culture in a free-choice mineral supplement for stocker cattle grazing wheat pasture. Oklahoma Agr. Exp. Sta. Research Reports MP-108:101-105.
  43. Sullivan, H. M. and S. A. Martin. 1999. Effects of a Saccharomyces cerevisia culture on in vitro mixed ruminal microorganism fermentation. J. Dairy Sci. 82:2011-2016. https://doi.org/10.3168/jds.S0022-0302(99)75438-X
  44. Takahashi, J., T. Chiba, T. Encho, J. Ikariga and H. Fujita. 1983. The acute and chronic effect of nitrate on heat production and methanogenesis in ruminants. Proceedings of the 5th World Conference on Animal Production, 14-19 August 1983, Tokyo, Japan. Japanese Society of Zootechnical Science, Tokyo, Japan, 2:351-352.
  45. Takahashi, J. 1989. Control of ruminal reduction by sulphur compounds. Asia-Aust. J. Anim. Sci. 2:530-532.
  46. Takahashi, J., N. Johchi and H. Fujita. 1989. Inhibitory effects of sulphur compounds, copper and tungsten on nitrate reduction by mixed rumen micro-organisms. Br. J. Nutr. 61:741-748.
  47. Takahashi, J. and B. A. Young. 1991. Prophylactic effect of Lcysteine on nitrate- induced alterations in respiratory exchange and metabolic rate in sheep. Anim. Feed Sci. Tech. 35:105-113.
  48. Takahashi, J. and B. A. Young. 1992. The modulation of nitrateenhanced hypothermia by sulphur compounds in cold-exposed sheep. Anim. Feed Sci. Technol. 39:347-355.
  49. Takahashi, J., A. S. Chaudhry, R. G. Beneke, Suhubdy and B. A. Young. 1997. Modification of methane emission in sheep by cysteine and a microbial preparation. Sci. Total Environ. 204:117-123.
  50. Takahashi, J., M. Ikeda, S. Matsuoka and H. Fujita. 1998. Prophylactic effect of L-cysteine to acute and subclinical nitrate toxicity in sheep. Anim. Feed Sci. Technol. 74:273-280.
  51. Takahashi, J., N. Shinya, S. Patricia, M. Mii, M. Suzuki, M. Kawai and S. Matsuoka. 2000. The evaluation of greenhouse gas, methane emission from orchardgrass and lucerne silage by using in vitro Gas Production System. Proceedings of the 97th Japanese Conference on Animal Production, 27-29 March 2000, Kyoto, Japan. Jpn. Soc. Anim. Sci. p. 149.
  52. Takahashi, J. 2001. Nutritional manipulation of methanogenesis in ruminants. Asian-Aust. J. Anim. Sci. 14, special Issue:131-135.
  53. Takahashi, J., M. Mii, Y. Gamo, K. Kimura, K. Umetsu, T. Kishimoto and I. Arai. 2002. Nutritional options for abatement of methane emission from farm animals. In: Global Perspective in Livestock Waste Management. (Ed. H. K. Ong, I. Zulkifli, T. P. Tee and J. B. Liang). Malaysian Society of Animal Production. Serdang, pp. 149-155.
  54. Takahashi, J. and B. A. Young. 2002. Greenhouse Gases and Anmal Agriculture, Elsevier, Amsterdam.
  55. Takahashi, J., Y. Gamo, B. Mwenya, B. Santoso, S. Chetra, K. Umetsu, H. Mizukoshi, K. Kimura and O. Hamamoto. 2003. Control and energetic recycling of methane emitted from ruminants. In: Progress in Energy and Protein Metabolism. (Ed. W. B. Souffrant and C. C. Metges). EAAP publication 109. Wagenigen Academic Publisher. pp. 413-416.
  56. Teh, T. H., T. Sahlu, E. N. Escorbar and J. L. Cushaw. 1987. Effects of live yeast culture and sodium bicarbonate on lactating goats. J. Dairy Sci. 70(suppl. 1):2000(Abstr.).
  57. Van Navel, C. S. and D. I. Demyer. 1988. Manipulation of rumen fermentation. In: (Ed. P. N. Hobson). The Rumen Microbial Ecosystem. London: Elsevier Applied Science, pp. 387-443.
  58. Watanuki, M., Y. Wada and K. Matsumoto, K. 1996. Digestibility and physiological heat of combustions of $\beta$1-4 and $\beta$1-6 galacto-oligosaccharides in vitro. Annual Reports of the Yakult Central Institute for Microbiological research, 16:1-12.
  59. Wiedmeier, R. D., M. J. Arambel, and J. L. Walters. 1987. Effects of yeast culture and Arspigillus oryzae fermentation extract on ruminal characteristics and nutrient digestion. J. Dairy Sci. 70:2063.
  60. Wolin, M. J. 1975. Interactions between the bacterial species of the rumen. In: Digestion and Metabolism in the Ruminant. (Ed. I. M. McDonald and A. C. I. Warner). Univ. New England Publ. Unit, Sydney, Australia, pp. 135-148.

Cited by

  1. Electrochemical Control of Methane Emission from Lake Sediment Using Microbial Fuel Cells vol.33, pp.7, 2012, https://doi.org/10.5012/bkcs.2012.33.7.2401
  2. Effect of monensin withdrawal on rumen fermentation, methanogenesis and microbial populations in cattle pp.13443941, 2015, https://doi.org/10.1111/asj.12368
  3. rumen fermentation vol.123, pp.1, 2017, https://doi.org/10.1111/jam.13475
  4. Effects of dietary active dried yeast (Saccharomyces cerevisiae) supply at two levels of concentrate on energy and nitrogen utilisation and methane emissions of lactating dairy cows vol.57, pp.4, 2017, https://doi.org/10.1071/AN15356
  5. Effects of Supplementation of Different Sources of Tannins on Nutrient Digestibility, Methane Production and Daily Weight Gain of Beef Cattle Fed on Ammoniated Oil Palm Frond Based Diet vol.14, pp.1, 2018, https://doi.org/10.3923/ijzr.2018.8.13
  6. Comparison of nisin and monensin effects on ciliate and selected bacterial populations in artificial rumen vol.54, pp.6, 2009, https://doi.org/10.1007/s12223-009-0076-8
  7. Control of Rumen Microbial Fermentation for Mitigating Methane Emissions from the Rumen vol.21, pp.1, 2005, https://doi.org/10.5713/ajas.2008.r01
  8. Tannins determined by various methods as predictors of methane production reduction potential of plants by an in vitro rumen fermentation system vol.150, pp.3, 2005, https://doi.org/10.1016/j.anifeedsci.2008.10.011
  9. Methane Emissions from Dry Cows Fed Grass or Legume Silage vol.23, pp.5, 2005, https://doi.org/10.5713/ajas.2010.90488
  10. Methane emission by sectors: A comprehensive review of emission sources and mitigation methods vol.16, pp.7, 2005, https://doi.org/10.1016/j.rser.2012.04.008
  11. Role of dose‐dependent Lactobacillus farciminis on ruminal microflora biogases and fermentation activities of three silage‐based rations vol.127, pp.6, 2005, https://doi.org/10.1111/jam.14422
  12. Diversity of Prokaryotes in the Rumen of Steers Fed a Diet Supplemented with or without Bromochloromethane, an Anti-methanogenic Compound vol.54, pp.2, 2005, https://doi.org/10.6090/jarq.54.179
  13. Phytogenic Additives Can Modulate Rumen Microbiome to Mediate Fermentation Kinetics and Methanogenesis Through Exploiting Diet–Microbe Interaction vol.7, pp.None, 2005, https://doi.org/10.3389/fvets.2020.575801
  14. Entomological approach to the impact of ionophore-feed additives on greenhouse gas emissions from pasture land in cattle vol.63, pp.1, 2005, https://doi.org/10.5187/jast.2021.e11
  15. Effects of probiotics and encapsulated probiotics on enteric methane emission and nutrient digestibility in vitro vol.788, pp.1, 2005, https://doi.org/10.1088/1755-1315/788/1/012050