초록
A basis of the cycle space C (G) is d-fold if each edge occurs in at most d cycles of C(G). The basis number, b(G), of a graph G is defined to be the least integer d such that G has a d-fold basis for its cycle space. MacLane proved that a graph G is planar if and only if $b(G)\;{\leq}\;2$. Schmeichel showed that for $n\;{\geq}\;5,\;b(K_{n}\;{\bullet}\;P_{2})\;{\leq}\;1\;+\;b(K_n)$. Ali proved that for n, $m\;{\geq}\;5,\;b(K_n\;{\bullet}\;K_m)\;{\leq}\;3\;+\;b(K_n)\;+\;b(K_m)$. In this paper, we give an upper bound for the basis number of the semi-strong product of a bipartite graph with a cycle.