초록
We first show that any complete MV-algebra whose Boolean subalgebra of idempotent elements is atomic, called a complete MV-algebra with atomic center, is isomorphic to a product of unit interval MV-algebra 1's and finite linearly ordered MV-algebras of A(m)-type $(m{\in}{\mathbb{Z}}^+)$. Secondly, for a semi-simple MV-algebra A, we introduce a completion ${\delta}(A)$ of A which is a complete, MV-algebra with atomic center. Under their intrinsic topologies $(see\;{\S}3)$ A is densely embedded into ${\delta}(A)$. Moreover, ${\delta}(A)$ has the extension universal property so that complete MV-algebras with atomic centers are epireflective in semi-simple MV-algebras