Cold crucible을 이용한 실리콘의 전자기주조

Cold Crucible Electromagnetic Casting of Silicon

  • 신제식 (한국생산기술연구원 신소재개발본부 신소재공정팀) ;
  • 이상목 (한국생산기술연구원 신소재개발본부 신소재공정팀) ;
  • 문병문 (한국생산기술연구원 신소재개발본부 신소재공정팀)
  • Shin, Je-Sik (New Materials Processing Team, Advanced Materials R&D Center, Korea Institute of Industrial Technology) ;
  • Lee, Sang-Mok (New Materials Processing Team, Advanced Materials R&D Center, Korea Institute of Industrial Technology) ;
  • Moon, Byung-Moon (New Materials Processing Team, Advanced Materials R&D Center, Korea Institute of Industrial Technology)
  • 발행 : 2005.06.20

초록

In the present study, an EMC (Electromagnetic Casting) process, using a segmented Cu cold crucible under a high frequency alternating magnetic field of 20 kHz, was practiced for the fabrication of poly-crystalline Si ingot of 50 mm diameter. The effects of Joule heating and electromagnetic pressure in molten Si were systematically investigated with various processing parameters such as electric current and crucible configuration. A preliminary experimental work was initiated with the pure Al system for the establishment of a stabilized non-contact working condition, and further adapted to the semiconductor-off-grade Si system. A commercialized software such as Opera-3D was utilized in order to simulate electromagnetic pressure and Joule heating. In order to evaluate the meniscus shape of the molten melts, shape parameter was used throughout the research. A segmented graphite crucible, which was attached at the upper part of the cold crucible, was introduced to enhance significantly the heating efficiency of Si melt keeping non-contact condition during continuous melting and casting processes.

키워드

참고문헌

  1. S. Asai: Proceeding of the 6th International Iron and Steel Congress, (1990) 370-379
  2. M. Furui, Y. Kojima and M. Matsuo: ISIJ, 33 (1993) 400-404 https://doi.org/10.2355/isijinternational.33.400
  3. J. P. Park H. T. Jeong, D. J. Sim and H. Y. Kim: J. Kor. Inst. Met. & Mater., 36 (1998) 1598-1604
  4. M. Schmela: Photon International, March (2004) 46-53
  5. M. Schmela: Photon International, April (2004) 34-38
  6. I. Perichaud, S. Martinuzzi and F. Durand: Solar Energy & Solar Cells, 72 (2002) 101-107 https://doi.org/10.1016/S0927-0248(01)00155-6
  7. E. Ehret: Solar Energy Materials and Solar Cells, 53 (1998) 313-327 https://doi.org/10.1016/S0927-0248(98)00022-1
  8. 弟l回エネルギー使用合理化シリコン製造プロセス開發(事後評價)分科會 資料6-1
  9. V. M. Glazov, S. N. Chizhevskaya and N. N. Glagoleva: 'Liquid semiconductors', Plenum press, New York (1969) 55-83
  10. M. J. Ha and Z. H. Lee: J. Kor. Foundrymen's Soc., 14 (1994) 159-167
  11. M. J. Ha: 'Effectt of Inductor Coil Shape on the Free Surface Shape of Molten Tin', KAIST M.S. thesis (1994)
  12. C. R. Paul and S. A. Nasr: 'Introduction to Electromagnetic Field', McGraw-Hill Int. Edition (1987)
  13. W. F. Gale and T.C. Totemeier: 'Smithells Metals Reference Book 2', Elsevier Inc. (2004)
  14. K. Sassa and S. Asai: Journal of Japan Soc. for Heat Treatment, 30 (1990) 80-86
  15. S. H. Chung, Y. J. Oh, Y. W. Cho, K. W. Yi and J. D. Shim: J. Kor. Inst. Met. & Mater., 33 (1995) 1360-1367
  16. European Patent No. 1-254-861-A1
  17. Japanese Patent No. 2001-19594
  18. F. Negrini, M. Fabbri, M. Zuccarini, E. Takeuchi and M. Tani: Energy Conversion & Management, 41 (2000) 1687-1701 https://doi.org/10.1016/S0196-8904(99)00185-5
  19. D.R. Poirier and G.H. Geiger: 'Transport Phenomena in Materials Processing', TMS (1994)