주파수 전달함수 합성법에 의한 모델축소 및 PID 제어기 설계

A Model Reduction and PID Controller Design Via Frequency Transfer Function Synthesis

  • 발행 : 2005.03.31

초록

This paper presents a frequency transfer function synthesis for simplifying a high-order model with time delay to a low-order model. A model reduction is based on minimizing the error function weighted by the numerator polynomial of reduced systems. The proposed method provides better low frequency fit and a computer aided algorithm. And in this paper, we present a design method of PID controller for achieving the desired specifications via the reduced model. The proposed method identifies the parameter vector of PID controller from a linear system that develops from rearranging the two dimensional input matrices and output vectors obtained from the frequency bounds.

키워드

참고문헌

  1. K. J. Astrom and T. Hagglund, 'Automatic Tuning of Simple Regulators with Specifications on Phase and Amplitude Margins', Automatica, vol. 20, no. 5, pp. 645-651, 1984 https://doi.org/10.1016/0005-1098(84)90014-1
  2. K. J. Astrom and T. Hagglund, PID Controllers : Theory, Design, and Tuning, Instrument Society of America, 1995
  3. W. K. Ho, C. C. Hang, and L. S. Cao, 'Tuning of PID Controllers based on Gain and Phase Margin Specifications', Automatica, vol. 31, no. 3, pp. 497-502, 1995 https://doi.org/10.1016/0005-1098(94)00130-B
  4. W. K. Ho, O. P. Gan, E. B. Tay, and E. L. Ang, 'Performance and Gain and Phase Margins of Wellknown PID Tuning Formulas', IEEE Trans. on Contr. Syst, Technol., vol. 4, no. 4, pp. 473-477, 1996 https://doi.org/10.1109/87.508897
  5. Q. G. Wang, T. H. Lee, H. W Fung, Q. Bi and Y. Zhang, 'PID Tuning for Improved Performance', IEEE Trans. on Contr. Syst, Technol., vol. 7, no. 4, pp. 457-465, 1999 https://doi.org/10.1109/87.772161
  6. 조준호, 김정철, 김진권, 최정내, 황형수, '주파수 영역에서 Nyquist 선도를 이용한 모델 축소', 제어.자동화.시스템공학 논문지, 제 8권, 제 6호, pp. 439-444, 2002
  7. 최정내, 조준호, 이원혁, 황형수, '축소모델을 이용한 최적화된 Smith Predictor 제어기 설계', 전기학회 논문지, 제 52권, 제11호, pp. 619-625, 2003
  8. A. H. Whitfield, 'Transfer Function Synthesis using Frequency Response Data', Int J Cont. vol. 43, pp. 1413-1426, 1986 https://doi.org/10.1080/00207178608933548
  9. S. Van Huffel and J. Vandewalle, The Total Least Squares Problem Computational Aspects and Analysis, SIAM, 1991
  10. T. K. Moon and W. C. Stirling, Mathematical Methods and Algorithms for Signal Processing, Prentice Hall, 2000