Opposite Roles of B7.1 and CD28 Costimulatory Molecules for Protective Immunity against HSV-2 Challenge in a gD DNA Vaccine Model

  • Weiner, David B. (Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine) ;
  • Sin, Jeong-Im (Department of Microbiology, Catholic University of Daegu School of Medicine)
  • Published : 2005.06.30

Abstract

Background: Costimulation is a critical process in Ag-specific immune responses. Both B7.1 and CD28 molecules have been reported to stimulate T cell responses during antigen presentation. Therefore, we tested whether Ag-specific immune responses as well as protective immunity are influenced by coinjecting with B7.1 and CD28 cDNAs in a mouse HSV-2 challenge model system. Methods: ELISA was used to detect levels of antibodies, cytokines and chemokines while thymidine incorporation assay was used to evaluate T cell proliferation levels. Results: Ag-specific antibody responses were enhanced by CD28 coinjection but not by B7.1 coinjection. Furthermore, CD28 coinjection increased IgG1 production to a significant level, as compared to pgD+pcDNA3, suggesting that CD28 drives Th2 type responses. In contrast, B7.1 coinjection showed the opposite, suggesting a Th1 bias. B7.1 coinjection also enhanced Ag-specific Th cell proliferative responses as well as production of Th1 type cytokines and chemokines significantly higher than pgD+pcDNA3. However, CD28 coinjection decreased Ag-specific Th cell proliferative responses as well as production of Th1 types of cytokines and chemokine significantly lower than pgD+pcDNA3. Only MCP-1 production was enhanced by CD28. B7.1 coimmunized animals exhibited an enhanced survival rate as well as decreased herpetic lesion formation, as compared to pgD+pcDNA3. In contrast, CD28 vaccinated animals exhibited decreased survival from lethal challenge. Conclusion: This study shows that B7.1 enhances protective Th1 type cellular immunity against HSV-2 challenge while CD28 drives a more detrimental Th2 type immunity against HSV-2 challenge, supporting an opposite role of B7.1 and CD28 in Ag-specific immune responses to a Th1 vs Th2 type.

Keywords

References

  1. Carreno BM. Collins M: The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses. Ann Rev Immunol 20;29-53. 2002 https://doi.org/10.1146/annurev.immunol.20.091101.091806
  2. Sharpe AH. Freeman GT: The B7-CD28 superfamily. Nat Rev Immunol 2;116-126. 2002 https://doi.org/10.1038/nri727
  3. Lanier LL. O'Fallon S. Somoza e. Phillips TH. Linsley PS. Okumura K: CD80 (B7) and CD86 (B70) provide similar costimulatorv signals for T-cell proliferation. cvtokine production. and generation of CTL. J Immunol 154;97-105. 1995
  4. June C Bluestone TA. Nadler LM. Thompson CB: The B7 and CD28 receptor families. Immunol Today 15;321-333, 1994 https://doi.org/10.1016/0167-5699(94)90080-9
  5. Kubo M. Yamashita M. Abe R. Tada T. Okumura K. Ransom ,TT. Nakayama T: CD28 costimulation accelerates IL-4 receptor sensitivitv and IL-4-mediated Th2 differentiation. J Immunol 163;2432-2442. 1999
  6. Rodrizuez-Palrnero M. Hara T. Thumbs A Hunia T: Triggering of T cell proliferation through CD28 induces GATA-3 and promotes T helper type 2 differentiation in vitro and in vivo. Eur J Immunol 29;3914-3924. 1999 https://doi.org/10.1002/(SICI)1521-4141(199912)29:12<3914::AID-IMMU3914>3.0.CO;2-#
  7. Bian Y. Hiraoka S. Tomura M. Zhou XY. Yashiro-Ohtani Y. Mori Y. Shimizu T. Ono S. Dunussi-Ioannonoulos K. Wolf S. Fujiwara H: The capacitv of the natural ligands for CD28 to drive IL-4 expression in naive and antigen-primed CD4 + and CD8 + T cells. Int Immunol 17;73-83. 2005 https://doi.org/10.1093/intimm/dxh188
  8. Orabona e. Grohmann U. Belladonna ML. Fallarino F. Vacca C Bianchi R. Bozza S. Volpi C Salomon BL. Fioretti Me. Romani L. Puccetti P: CD28 induces immunostimulatorv signals in dendritic cells via CD80 and CD86. Nat Immunol 5;1134-1142. 2004 https://doi.org/10.1038/ni1124
  9. Mivahira Y. Katae M. Kobayashi S. Takeuchi T. Fukuchi Y. Abe R. Okumura K. Yazita H. Aoki T: Critical contribution of CD28-CD80/CD86 costimulatorv pathway to protection from Trvpanosoma cruzi infection. Infect Immun 71;3131-3137. 2003 https://doi.org/10.1128/IAI.71.6.3131-3137.2003
  10. Iwasaki A. Stiernholm BT. Chan AK. Berstein NL. Barber BH: Enhanced CTL responses mediated by plasmid DNA irnmunozens encoding costimulatorv molecules and cytokines. J Immunol 158;4591-4601. 1997
  11. Kim TT. Bazarazzi ML. Trivedi N. Hu Y. Chatterzoon MA. Dang K. Mahalinzarn S. Azadianvan MG. Boyer TD. Wang B. Weiner BD: Engineering of in vivo immune responses to DNA immunization via co-delivery of costimulatory molecule genes. Nat Biotech 15;641-645. 1997 https://doi.org/10.1038/nbt0797-641
  12. Flo T. Tisminetzkv S. Baralle F: Modulation of the immune response to DNA vaccine by co-delivery of costimulatory molecules. Immunol 100;259-267. 2000 https://doi.org/10.1046/j.1365-2567.2000.00041.x
  13. Maue AC Waters WR. Palmer MV. Whipple DL. Minion Fe. Brown We. Estes DM: CD80 and CD86. but not CD154. augment DNA vaccine-induced protection in experimental bovine tuberculosis. Vaccine 23;769-779. 2004 https://doi.org/10.1016/j.vaccine.2004.07.019
  14. Nahmias AJ. Dannenbarzer J. Wickliffe C Muther J: Clinical aspects of infection with herpes simplex virus 1 and 2. Elsevier. New York. 1980
  15. Kuklin NA Daheshia M. Chun S. Rouse BT: Role of mucosal immunity in herpes simplex virus infection. J Immunol 160;5998-6003, 1998
  16. Yu Z, Manickan E, Rouse BT: Role of interferon-gamma in immunity to herpes simplex virus. J Leuko Biol 60;528-532, 1996 https://doi.org/10.1002/jlb.60.4.528
  17. Sin TI, Kim n, Arnold RL, Shroff KE, McCallus D, Pachuk e. McElhinev SP. Wolf MW. Pompa-de Bruin S1. Higgins TI. Ciccarelli RB, Weiner DB: Interleukin-12 gene as a DNA vaccine adjuvant in a herpes mouse model: TI-12 enhances Th1 type CD4+ T cell mediated protective immunity against HSV-2 challenge. J Immunol 162;2912-2921, 1999
  18. Sin TI, Kim n, Bover TD, Higgins TI. Ciccarelli RB, Weiner DB: In vivo modulation of vaccine-induced immune responses toward a Th1 phenotype increases potency and vaccine effectiveness in a herpes simplex virus type 2 mouse model. J Virol 73;501-509, 1999
  19. Sin TI. Bazarazzi M, Patchuk e. Weiner DB: DNA primingprotein boosting enhances both Az-specific antibody and Th 1 type cellular immune responses in a murine herpes simplex virus-2 gD vaccine model. DNA Cell Biol 18;771779, 1999
  20. Sin TI. Avvavoo V. Bover I. Kim I. Ciccarelli RB. Weiner DB: Protective immune correlates can segregate bv vaccine type in a murine herpes model system. Int Immunol 11; 1763-1773, 1999 https://doi.org/10.1093/intimm/11.11.1763
  21. McDermott MR, Smiley TR, Leslie P, Brais J. Rudzroza HE, Bienenstock T: Immunitv in the female genital tract after intravaginal vaccination of mice with an attenuated strain of herpes simlex virus type 2. J Virol 51;747-753, 1984
  22. Milligan GN, Bernstein DI: Generation of humoral immune responses against herpes simplex virus type 2 in the murine female genital tract. Virol 206;234-241, 1995 https://doi.org/10.1016/S0042-6822(95)80038-7
  23. Ghiasi H, Cai S, Slanina S, Nesburn AB, Wechsler SL: Vaccination of mice with herpes simplex virus type 1 glvconrotein D DNA produces low levels of protection against lethal HSV-l challenge. Antiviral Res 28;147-157, 1995 https://doi.org/10.1016/0166-3542(95)00045-N
  24. Martin S. Moss B, Berman PW. Laskev LA. Rouse BT: Mechanisms of antiviral immunity induced bv a vaccine virus recombinant expressing herpes simplex virus type 1 zlvcoprotein D: cytotoxic T-cells. J Virol 61;726-734, 1987
  25. Cruz PE, Khalil PL, Drvden TD, Chiou He. Fink PS, Berberich S1. Bizlev NT: A novel immunization method to induce cvtotoxic T-lvmphocvte responses (CTL) against plasmid-encoded herpes simplex virus type-1 glycoprotein D. Vaccine 17;1091-1099, 1999 https://doi.org/10.1016/S0264-410X(98)00326-0
  26. Snapper CM. Paul WE: Interferon-gamma and B cell stimulatorv factor-1 reciprocally regulate Ig isotype production. Science 236;944-947. 1987 https://doi.org/10.1126/science.3107127
  27. Sin JI. Kim JI. Dang K Lee D. Patchuk e. Satishchandran e. Weiner DB: LFA-3 plasmid DNA enhances Az-specific humoral and cellular mediated protective immunity against herpes simplex virus-2 in vivo: Involvement of CD4 + T cells in protection. Cell Immunol 203;19-28, 2000 https://doi.org/10.1006/cimm.2000.1667
  28. Sin TI, Kim JI, Ugen KE, Ciccarelli RB, Higgins TJ. Weiner DB: Enhancement of protective humoral (Th2) and cell-mediated (Th1) immune responses against herpes simplex virus-2 through co-delivery of granulocyte macrophage-colony stimulating factor expression cassettes. Eur J Immunol 28;3530-3540, 1998 https://doi.org/10.1002/(SICI)1521-4141(199811)28:11<3530::AID-IMMU3530>3.0.CO;2-C
  29. Oppenheim JT, Zachariae CO, Mukaida N. Matsushima K: Properties of the novel nroinflarnrnatorv supergene 'intercrine' cvtokine family. Ann Rev Immunol 9;617-648. 1991 https://doi.org/10.1146/annurev.iy.09.040191.003153
  30. Schall TT: Biology of the RANTES/SIS cytokine family. Cytokine 3;165-183, 1991 https://doi.org/10.1016/1043-4666(91)90013-4
  31. Schall TJ. Bacon K, Tov KJ. Goeddel DV: Selective attraction of monocvtes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature 347;669-671, 1990 https://doi.org/10.1038/347669a0
  32. Murphv WJ, Taub DD, Anver M, Conlon K, Oppenheim JJ. Kelvin DJ. Longo DL: Human RANTES induces the migration of human T lvmnhocvtes into the peripheral tissues of mice with severe combined immune deficiency. Eur J Immunol 24;1823-1827, 1994 https://doi.org/10.1002/eji.1830240815
  33. Meurer R. Van Riper G, Feenev W, Cunningham P, Hora Jr. D, Springer MS, Maclnrvre DE. Rosen H: Formation of eosinophilic and rnoncvtic intradermal inflammatory sites in the dog bv iniection of human RANTES but not human monocvte chemoattractant protein 1. human macrophage inflammatory protein 1 alpha, or human interleukin 8. J Exp Med 178;1 913-1921. 1993
  34. Taub DD, Turcovski-Corrales SM, Kev ML, Longo DL, Murphv WT: Chemokines and T lvrnphocvte activation: I. Beta chemokines costimulate human T lvmphocyte activation in vitro. J Immunol 156;2095-2103, 1996
  35. Karpus WT, Kennedv KJ. Kunkel SL, Lukacs NW: Monocvte chemotactic protein 1 regulates oral tolerance induction by inhibition of T helper cell 1-related cytokines. J Exp Med 187;733-741, 1998 https://doi.org/10.1084/jem.187.5.733
  36. Kim JJ. Nottingham LK Sin TI. Tsai A Morrison L, Dang K, Hu Y, Kazahava K, Bennett M, Dentchev T, Wilson DM, Chalian AA, Bover TD, Azadianvan MG, Weiner DB: CD8 positive T-cells influence antigen-specific immune responses through the expression of chemokines. J Clin Invest 102; 1112-1124, 1998 https://doi.org/10.1172/JCI3986
  37. Sallusto F, Lenig D, Mackav CR. Lanzavecchia A: Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J Exp Med 187; 875-883, 1998 https://doi.org/10.1084/jem.187.6.875
  38. Tumpev TM, Cheng RYan XT Oakes JE. Lausch RN: Chemokine svnthesis in the HSV-1-infected cornea and its suppression bv interleukin-10. J Leuko Biol 63;486-492, 1998 https://doi.org/10.1002/jlb.63.4.486
  39. Lukacs NW, Chensue SW, Karpus WL Lincoln P, Keefer C Strieter RM, Kunkel SL: C-C chemokines differentiallv alter interleukin-4 production from lymphocytes. Am J Pathol 150;1861-1868, 1997
  40. Sin JI. Kim JL Pachuk C Satishchanran C Weiner DB: DNA vaccines encoding interleukin-8 and RANTES enhance antigen-specific Th-l type CD4+ T cell-mediated protecetive immunitv against herpes simplex virus-2 in vivo. J Virol 74; 11173-11180, 2000 https://doi.org/10.1128/JVI.74.23.11173-11180.2000
  41. Ho M: Interferon as an agent against herpes simplex virus. J Investig Dermatol 95;S158-S160, 1990 https://doi.org/10.1111/1523-1747.ep12477928
  42. Guidotti LG, Rochford K Chung L Shapiro M, Purcell R. Chisari FV: Viral clearance without destruction of infected cells during acute HBV. Science 284;825-829, 1999 https://doi.org/10.1126/science.284.5415.825
  43. Guidotti LG, Borrow P, Brown A, McClarv R Koch R. Chisari FV: Noncvtopathic clearance of lvmphocvte choriomeningitis virus from the hepatocyte. J Exp Med 189;1555-1564, 1999 https://doi.org/10.1084/jem.189.10.1555
  44. Chatterzoon MA Robinson TM, Bover J, Weiner DB: Specific immune induction following DNA-based immunization through in vivo transfection and activation of macrophages. J Immunol 160;5707-5718, 1998
  45. Sin JI, Kim J Chatterzoon M, Avvavoo V, McCallus D, Ugen ICE. Bover JD, Weiner DB: Engineering of DNA vaccines using molecular adjuvant plasmids. Dev Biol(Basel) 104; 187-198, 2000