Isolation and Characterization of Antioxidative Compounds from the Aerial Parts of Angelica keiskei

  • Kim, So-Joong (Department of Food Science & Technology and Institute of Agricultural Science & Technology, Chonnam National University) ;
  • Cho, Jeong-Yong (Department of Food Science & Technology and Institute of Agricultural Science & Technology, Chonnam National University) ;
  • Wee, Ji-Hyang (Department of Food Science & Technology and Institute of Agricultural Science & Technology, Chonnam National University) ;
  • Jang, Mi-Young (Department of Food Science & Technology and Institute of Agricultural Science & Technology, Chonnam National University) ;
  • Kim, Cheol (SHALOM Industries Co., Ltd.) ;
  • Rim, Yo-Sup (Division of Environmental and Agricultural Science, Sunchon National University) ;
  • Shin, Soo-Cheol (Division of Food. Science, Sunchon National University) ;
  • Ma, Seung-Jin (Department of Entomology and Cancer Research Center, University of California) ;
  • Moon, Jae-Hak (Department of Food Science & Technology and Institute of Agricultural Science & Technology, Chonnam National University) ;
  • Park, Keun-Hyung (Department of Food Science & Technology and Institute of Agricultural Science & Technology, Chonnam National University)
  • 발행 : 2005.02.28

초록

Ethyl acetate-soluble neutral fraction of hot water extracts from the aerial parts of Angelica keiskei showed a 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity. Six antioxidative compounds were purified and isolated by various chromatographic procedures. Based on the analyses of FAB-MS and NMR, the isolated compounds were structurally elucidated as luteolin 7-O-${\beta}$-D-glucopyranoside (1), quercetin 3-O-${\beta}$-D-galactopyranoside (2), quercetin 3-O-${\beta}$-D-glucopyranoside (3), quercetin 3-O-${\alpha}$-D-arabinopyranoside (4), kaempferol 3-O-${\alpha}$-D-arabinopyranoside (5), and luteolin 7-O-rutinoside (6). The glycosides of flavonols and luteolin showed DPPH radical-scavenging activity. One molecule of 2, 3, 4, 6, 1, and 5 scavenged 4.2, 4.2, 4.1, 2.5, 2.2, and 1.4 molecules of DPPH radical, respectively.

키워드

참고문헌

  1. Eur. J. Lipid Sci. Technol. v.103 Stabilisation of edible oil with natural antioxidants Yanishlieva, N.Y.;Marinova, E.M. https://doi.org/10.1002/1438-9312(200111)103:11<752::AID-EJLT752>3.0.CO;2-0
  2. Mol. Aspects Med. v.25 Aging and oxidative stress Junginia, V.B.C.;Barros, S.M.B.;Chan, S.S.;Rodrigues, L.;Giavarotti, L.;Abud, R.L.;Deucher, G.P. https://doi.org/10.1016/j.mam.2004.02.003
  3. Nutr. Res. v.21 Antioxidants, programmed cell death, and cancer Lopaczynski, W.;Zeisel, S.H. https://doi.org/10.1016/S0271-5317(00)00288-8
  4. J. Nutr. v.134 no.3 Intakes of antioxidants in coffee, wine, and vegetables are correlated with plasma carotenoids in humans Svilaas, A.;Sakhi, A.K.;Andersen, L.F.;Svilaas, T.;Strom, E.C.;Jacobs, D.R. Jr.;Ose, L.;Blomhoff. R.
  5. Food Chem. Toxicol. v.37 Mechanisms of action of antioxidants as exemplified in vegetables, tomatoes and tea Weisburger, J.H. https://doi.org/10.1016/S0278-6915(99)00086-1
  6. J. Food Compo Anal. v.17 Development of a database for total antioxidant capacity in foods: A preliminary study Xu, X.;Gu, L.;Holden, J.;Haytowitz, D.B.;Gebhardt, S.E.;Beecher, G.;Prioe, R.L. https://doi.org/10.1016/j.jfca.2004.03.001
  7. Food Chem. v.72 Natural antioxidants from residual sources Moure, A.;Cruz, J.M.;Franco, D.;Dominguez, J.M.;Sineiro, J.;Dominguez, H.;Nuriez, M.S.;Parajo, J.C. https://doi.org/10.1016/S0308-8146(00)00223-5
  8. Phytochemistry v.65 Sorghum phytochemicals and their potential impact on human health Awika, J.M.;Rooney, L.W. https://doi.org/10.1016/j.phytochem.2004.04.001
  9. Mol. Aspects Med. v.24 Effects of vitamin E and carotenoid status on oxidative stress in health and disease. Evidence obtained from human intervention studies Winklhofer-Roob, B.M.;Rock, E.;Ribalta, J.;Shmerling, D.H.;Roob, J.M. https://doi.org/10.1016/S0098-2997(03)00035-9
  10. Nutrition v.18 Free radicals, antioxidants, and nutrition Fang, Y.Z.;Yang, S.;Wu, G. https://doi.org/10.1016/S0899-9007(02)00916-4
  11. Nutrition v.17 Antioxidant mobilization in response to oxidative stress: A dynamic environmental-nutritional interaction Elsayed, N.M. https://doi.org/10.1016/S0899-9007(01)00646-3
  12. Kor. J. Phannacogn. v.26 no.4 Isolation of flavone-7 -O-glycosides from the aerial parts of Angelica keiskei and anti-hyperlipidemic effect Park, J.C.;Cho, Y.S.;Park, S.K.;Park, J.R.;Chun, S.S.;Ok, K.D.;Choi, J.W.
  13. J. Nutr. Sci. Vit. v.45 Effects of angiotensin 1-converting enzyme inhibitor from Ashitaba (Angelica keiskei) on blood pressure of spontaneously hypertensive rats Shimizu, E.;Hayashi, A.;Takahashi, R.;Aoyagi, Y.;Murakami, T.;Kimoto, K. https://doi.org/10.3177/jnsv.45.375
  14. Nat. Med. v.55 Histamine release-inhibiting activity of Angelica keiskei Kouji, N.;Kimie, B.
  15. Planta Med. v.67 Artery relaxation by chalcones isolated from the roots of Angelica keiskei Masaharu, M.;Yoshiyuki, K.;Kouji, N.;Kimiye, B.;Hiromichi, O. https://doi.org/10.1055/s-2001-12011
  16. Planta Med. v.57 Anti-tumor-promotion by principles obtained from Angelica keiskei Okuyama, T.;Takata, M.;Takayasu, J.;Hasega wa, T.;Tokuda, H.;Nishino, A.;Nishino, H.;Iwashima, A. https://doi.org/10.1055/s-2006-960082
  17. Int. J. Cancer v.106 Antitumor and antimetastatic activities of Angelica keiskei roots, Part 1 : Isolation of an active substance, Xanthoangelol Kimura, Y.;Baba, K. https://doi.org/10.1002/ijc.11256
  18. Cancer Lett. v.201 Chalcones, coumarins, and flavanones from the exudates of Angelica keiskei and their chemopreventive effects Akihisa, T.;Tokuda, H.;Ukiya, M.;Iizuka, M.;Schneider, S.;Ogasawara, K.;Mukainaka, T.;Iwatsuki, K.;Suzuki, T.;Nishino, H. https://doi.org/10.1016/S0304-3835(03)00466-X
  19. Shoyakugaku Zasshi v.44 Chemical components of Angelica keiskei Koidzumi. (V). Components of the fruits, and comparison of coumarins and chalcones in the fruits, roots and the leaves Kimye, B.;Tadashi, K.;Yuko, Y.;Masahiko, T.;Mitsugi, K.
  20. Phytochemistry v.29 no.12 Chalcones from Angelica Keiskei Baba, K.;Nakata, K.;Taniguchi, M.;Kido, T.;Kozawa, M. https://doi.org/10.1016/0031-9422(90)85357-L
  21. Chem. Pharm. Bull. v.39 Chemical components of Angelica keiskei. VI. Antibacterial activity of two chalcones xanthoangelol and 4hydroxyderricin, isolated from the root of Angelica keiskei Koidzumi Yoshihiko, I.;Kimiye, B.;Hiroshi, T.;Masahiko, T.;Kouji, N.;Mitsugi, K. https://doi.org/10.1248/cpb.39.1604
  22. Kor. J. Pharmacogn. v.27 no.1 Chemical components from the aerial parts of Angelica keiskei Park, J.C.;Yu, Y.B.;Lee, J.H.;Choi, M.R.;Ok, K.D.
  23. Phytother. Res. v.16 Effects of extract from Angelica keiskei and its component, cynaroside, on the hepatic bromobenzene-metabolizing enzyme system in rats Park, J.K.;Park, J.G.;Kim, H.J.;Hur, J.M.;Lee, J.H.;Sung, N.J.;Chung, S.K.;Choi, J.W. https://doi.org/10.1002/ptr.783
  24. Food Sci. Biotechnol. v.13 no.1 Isolation and characterization of 3(Z)-dodecenedioic acid as an antibacterial substance from Hovenia dulcis $T_{HUNB}$ Cho, J.Y.;Moon, J.H.;Eun, J.B.;Chung, S.J.;Park, K.H.
  25. Food Chem. v.59 no.2 Identification and quantification of major polyphenols in apple pomace Lu, Y.;Foo, L.Y. https://doi.org/10.1016/S0308-8146(96)00287-7
  26. Free Rad. BioI. Med. v.30 Identification of quercetin $3-O{\beta}-D-glucuronide$ as an antioxidative metabolite in rat plasma after oral administration of quercetin Moon, J.H.;Tsushida, T.;Nakahara, K.;Terao, J. https://doi.org/10.1016/S0891-5849(01)00522-6
  27. Phamaceutica Acta Helvetiae v.70 Phytochemical investigations of Licania genus. Flavonoids and triterpenoids from Licania pittieri Mendez, J.;Bilia, A.R.;Morelli, I. https://doi.org/10.1016/0031-6865(95)00027-7
  28. Phytother. Res. v.12 Flavonol monoglycosides isolated from the antiviral fractions of Persea americana (Lauraceae) leaf infusion Almeida, A.P.;Miranda, M.M.F.S.;Simoni, I.C.;Wigg, M.D.;Lagrota, M.H.C.;Costa, S.S. https://doi.org/10.1002/(SICI)1099-1573(199812)12:8<562::AID-PTR356>3.0.CO;2-6
  29. Food Sci. Biotechnol. v.12 no.4 Quantitative analysis of two major flavonoid aglycones in acid hydrolyzed samples of Angelica keiskei by HPLC Lee, J.H.;Lee, J.Y.;Kim, K.N.;Kim, H.S.
  30. Pharm. Ther. v.96 The biochemistry and medical significance of the flavonoids Havsteen, B.H. https://doi.org/10.1016/S0163-7258(02)00298-X
  31. Free Rad. BioI. Med. v.20 Structure-antioxidant activity relationships of flavonoids and phenolic acids Rice-Evans, C.A.;Miller, N.J.;Paganga, G. https://doi.org/10.1016/0891-5849(95)02227-9
  32. Biosci. Biotechnol. Biochem. v.68 no.1 A hydroxyl group of flavonoids affects oral antiinflanunatory activity and inhibition of systemic tumor necrosis factor-a production Veda, H.;Yamazaki, C.;Yamazaki, M.
  33. Nutr. Cancer v.37 Tomato and soy polyphenols reduce insulin-like growth factor-I-stimulated rat prostate cancer cell proliferation and apoptotic resistance in vitro via inhibition of intracellular signaling pathways involving tyrosine Wang, S.;DeGroff, V.L.;Clinton, S.K.
  34. Free Rad. BioI. Med. v.22 Antioxidant and prooxidant behavior of flavonoids. structure-activity relationships Cao, G.;Sofic, E.;Prior, R. https://doi.org/10.1016/S0891-5849(96)00351-6
  35. J. Agric. Food Chem. v.49 Antioxidant and antiradical activities of flavonoids Burda, S.;Oleszek, W. https://doi.org/10.1021/jf001413m
  36. Biochem. Biophys. Res. Commum. v.282 Flavonoid B-ring chemistry and antioxidant activity: Fast reaction kinetics Pannala, A.S.;Chan, T.S.;O'Brien, P.J.;Rice-Evans, C.A. https://doi.org/10.1006/bbrc.2001.4705
  37. Free Rad. BioI. Med. v.20 Structural aspects of antioxidant activity of flavonoids Acker, S.A.B.E.Y.;Berg, D.N.D.;Tromp, M.N.J.L. https://doi.org/10.1016/0891-5849(95)02047-0
  38. Arch. Biochem. Biophys. v.372 Inhibitory effect of quercertin metabolites and their related derivatives on copper ion-induced lipid peroxidation in human low-density lipoprotein Yamamoto, N.;Moon, J.H.;Tsushida, T.;Nagao, A.;Terao, J. https://doi.org/10.1006/abbi.1999.1516
  39. Methods Enzymol. v.186 Flavonoids as antioxidants: Determination of radical-scavenging efficiencies Bors, W.;Heller, W.;Michel, C.;Saran, M. https://doi.org/10.1016/0076-6879(90)86128-I
  40. Arch. Biochem. Biophys. v.384 Efficiency of absorption and metabolic conversion of quercetin and its glucosides in human intestinal cell lines Caco-2 Murota, K.;Shimizu, S.;Chujo, H.;Moon, J.H.;Terao, J. https://doi.org/10.1006/abbi.2000.2123
  41. Am J. Physiol. (Regulatory Integrative Compo Physiol.) v.279 Accumulation of quercetin conjugates in blood plasma after the periodic ingestion of onion by woman Moon, J.H.;Nakata, R.;Oshima, S.;Inakuma, T.;Terao, J.
  42. J. Agric. Food Chem. v.49 Inhibitory effect of a quercetin matabolite, quercetin $3-O-{\beta}-D-glucuronide$, on lipid peroxidation in liposomal membranes Shirai, M.;Moon, J.H.;Tsushida, T.;Terao, J. https://doi.org/10.1021/jf010713g
  43. Biochem. Biophys. Res. Commun. v.293 Quercetin glucuronide prevents VSMC hypertrophy by angiotensin II via the inhibition of JNK and AP-l signaling pathway Yoshizumi, M.;Tsuchiya, K.;Suzaki, Y.;Kirima, K.;Kyaw, M.;Moon, J.H.;Terao, J.;Tamaki, T. https://doi.org/10.1016/S0006-291X(02)00407-2
  44. FEBS Lett. v.483 Intestinal absorption of luteolin and luteolin $7-O-{\beta}-glucoside$ in rats and humans Shimoi, K.;Okada, H.;Furugori, M.;Goda, T.;Takase, S.;Suzuki, M.;Hara, Y.;Yamamoto, H.;Kinae, N.
  45. Free Radic. BioI. Med. v.27 Comparison of the bioavailability of quercetin and catechin in rats Manach, C.;Texier, 0.;Morand, C.;Crespy, Y.;Regerat, F.;Demigne, C.;Remesy, C. https://doi.org/10.1016/S0891-5849(99)00159-8
  46. Free Radic. BioI. Med. v.29 Conjugation position of quercetin glucuronides and effect on biological activity Day, A.J.;Bao, Y.;Morgan, M.R.A.;Williamson, G. https://doi.org/10.1016/S0891-5849(00)00416-0
  47. Free Radic. Res. v.35 Human metabolism of dietary flavonoids: Identification of plasma metabolites of quercetin Day, A.J.;Mellon, F.;Barron, D.;Sarrazin, G.;Morgan, M.R.A.;Williamson, G. https://doi.org/10.1080/10715760100301441