Characterization of Bacteriocin Produced by Enterococcus faecium MJ-14 Isolated from Meju

  • Lim, Sung-Mee (Department of Hotel Culinary Arts, Tongmyong College) ;
  • Park, Mi-Yeon (Department of Food Science and Technology, Pukyong National University) ;
  • Chang, Dong-Suck (Department of Food Science and Technology, Pukyong National University)
  • 발행 : 2005.02.28

초록

Enterococcus faecium MJ-14, having strong antilisterial activity, was isolated from Korean fermented food, Meju. MJ-14 showed the same phenotypic characteristics, but different sugar utilization, as reference strain, E. faecium KCCM12118. It could utilize D-xylose, amygdaline, and gluconate, whereas E. faecium KCCM12118 could not. Optimal condition for bacteriocin production by E. faecium MJ-14 was at $37^{\circ}C$ and pH 7.0. Bacteriocin activity appeared in mid exponential phase and increased rapidly up to stationary phase. Activity was significantly promoted in MRS broth containing 3.0% glucose, 1.5% lactose, 2.0% peptone, or 1.5% tryptone. Bacteriocins effectively inhibited Enterococcus faecalis and Listeria spp. of Gram-positive bacteria, and Helicobacter pylori of Gram-negative bacteria, but did not inhibit yeasts and molds. They were stable against heat (for 30 min at $100^{\circ}C$), pH (3.0-9.0), long-term storage (for 60 days at 4 or $-20^{\circ}C$), and enzymatic digestion by catalase, proteinase K, papain, lysozyme, trypsin, chymotrypsin, and lipase, etc. Bacteriocin activity was completely inhibited by protease and pepsin, and 50% by ${\alpha}$-amylase. Studies on PCR detection of enterocin structural genes revealed bacteriocins are identical to enterocins A and B.

키워드

참고문헌

  1. FEMS Microbiol. Rev. v.87 Health and Nutrition benefits from lactic acid bacteria Gilliand, S.E. https://doi.org/10.1111/j.1574-6968.1990.tb04887.x
  2. J. Appl. Bacteriol. v.66 Probiotics in man and animals Fuller, R.
  3. FEMS Microbiol. Rev. v.87 Antagonistic activities of lactic acid bacteria in food and feed fermentation Lindgren, S.W.;Dobrogosz, W.J. https://doi.org/10.1111/j.1574-6968.1990.tb04885.x
  4. Bacteriol. Rev. v.40 Wannamaker LW Bacteriocins of Grampositive bacteria Tagg, J.R.;Dajani, A.S.
  5. Biotechnol. Adv. v.21 Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications Maria, P. https://doi.org/10.1016/S0734-9750(03)00077-6
  6. Appl. Environ. Microbiol. v.59 Common mechanistic action of bacteriocins from lactic acid bacteria Bruno, M.E.;Montville, T.J.
  7. FEMS Microbiol. Lett. v.129 Pore-forming bacteriocins of Gram-positive bacteria and self-protection mechanisms of producer organisms Tjakko, A.
  8. J. Appl. Microbiol. v.94 Partial characterization of bacteriocins produced by environmental strain Enterococcus faecium EK13 Marekova, M.;Laukova, A.;DeVuyst, L.;Skaugen, M.;Nes, I.F. https://doi.org/10.1046/j.1365-2672.2003.01861.x
  9. Int. J. Food Microbiol. v.71 Bacteriocins: safe, natural antimicrobials for food preservation Cleveland, B.;Montville, T.J.;Nes, I.F.;Chikindas, M.L. https://doi.org/10.1016/S0168-1605(01)00560-8
  10. Int. J. Food Microbiol. v.24 Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes Holzapfel, W.H.;Geisen, R.;Schillinger, U. https://doi.org/10.1016/0168-1605(94)00036-6
  11. Trends Food Sci. Technol. v.7 Potential of antagonistic microorganisms and bacteriocins for the biological preservation offoods Schillinger, U.;Geisen, R.;Holzapfel, W.H. https://doi.org/10.1016/0924-2244(96)81256-8
  12. Methods for studying bacteriocin;Methods in Microbiology, Vol. 7a Mayr, H.A.;Hedges, A.J.;Berkeley, R.C.;Norris, J.R.(ed.);Ribbons, D.W.(ed.)
  13. Enterococci. Vol. 2;Bergey's Manual of Systematic Bacteriology Mundt, J.O.;Sneath, P.H.A.(ed.);Mair, N.S.(ed.);Sharpe, M.E.(ed.);Holt, J.G.(ed.)
  14. The Genus Enterococcus;The Prokaryotes Devriese, L.A.;Collins, M.D.;Wirth, R.;Balows, A.(ed.);Triiper, H.G.(ed.);Martin, D.(ed.);Wim, H.(ed.);Karl, H.S.(ed.)
  15. Appl. Environ. Microbiol. v.54 Inhibition of Listeria monocytogenes by using bacteriocin PA-l produced by Pediococcus acidilactici PAC 1.0 Pucci, M.J.;Vedamuthu, E.R.;Kunka, B.S.;Vandergergh, P.A.
  16. Lett. Appl. Microbiol. v.27 Occurrence of bacteriocin production among environmental enterococci Laukova, A.;Czikkova, S.;Vasilkova, Z.;Juris, P.;Marekova, M. https://doi.org/10.1046/j.1472-765X.1998.00404.x
  17. Int. J. Food Microbiol. v.84 Screening for enterocins and detection of hemolysis and vancomycin resistance in enterococci of different origins Vuyst, L.D.;Moreno, M.R.F.;Revets, H. https://doi.org/10.1016/S0168-1605(02)00425-7
  18. Appl. Environ. Microbiol. v.58 Production of bacteriocin inhibitory to Listeria species by Enterococcus hirae Siragusa, G.R.
  19. Int. J. Food Microbiol. v.75 Enterocin 416K1, and antilisterial bacteriocin produced by Enterococcus casseliflavus 1M 416K1 isolated from Italian sausages Sabia, C.;Manicardi, G.;Messi, P.;Niederhausern, S.;Bondi, M. https://doi.org/10.1016/S0168-1605(01)00741-3
  20. J. Food Prot. v.55 Characterization of enterocin 1146, a bacteriocin from Enterococcus faecium Inhibitory to Listeria monocytogenes Parente, E.;Hill, C.
  21. J. Food Saf. v.12 Inhibition of Listeria monocytogenes by Lactococcus lactis subsp. lactis isolated from Italian raw ham Stecchini, M.L.;Aquili, V.;Sarais, I.;Pitotti, A. https://doi.org/10.1111/j.1745-4565.1992.tb00085.x
  22. Agric. Chem. Biotechnol. v.38 Inhibition of Listeria monocytogenes by bacteriocin(s) from lactic acid bacteria isolated from Kimchi Kim, J.R.
  23. Appl. Environ. Microbiol. v.57 Influence of growth conditions on the production of a bacteriocin, Pediocin AcH, by Pediococcus acidilactici H Biswas, S.R.;Purbita, R.;Johnson, M.C.;Ray, B.
  24. Appl. Microbiol. Biotechnol. v.41 Influence of pH on growth and bacteriocin production by Lactococcus lactis subsp. lactis 140NWC during batch fermentation Parente, E.;Ricciardi, A.;Addario, G.
  25. Afr. J. Biotechnol. v.2 Influence of cultural conditions on the production of bacteriocin by Lactobacillus brevis OG1 Ogunbanwo, S.T.;Sanni, A.I.;Onilude, A.A.
  26. J. Appl. Microbiol. v.88 Preliminary characterization of bacteriocin produced by Enterococcus faecium and Enterococcus faecalis isolated from pig feces Toit, M.D.;Franz, C.M.;Dicks, L.M.;Holzapfel, W.H. https://doi.org/10.1046/j.1365-2672.2000.00986.x
  27. Int. J. Food Microbiol. v.29 Produced and characterization of enterocin 900, a bacteriocin produced by Enterococcus faecium BFE 900 from black olives Franz, C.M.;Schillinger, U.;Holzapfel, W.H. https://doi.org/10.1016/0168-1605(95)00036-4
  28. Food Control v.7 Prevalence of Listeria monocytogenes in foods: Incidence in dairy products Kozak, J.;Balmer, T.;Byrne, R.;Fisher, K. https://doi.org/10.1016/S0956-7135(96)00042-4
  29. Food Control v.7 Prevalence of Listeria spp. in meat and poultry products James, M.J. https://doi.org/10.1016/S0956-7135(96)00043-6
  30. Food Sci. Biotechnol. v.9 Identification and partial characterization of lacticin JW3, a bacteriocin produced by Lactococcus lactis JW3 isolated from commercial Swiss cheese products Jung, M.Y.;Paik, H.D.
  31. Int. J. Food Microbiol. v.19 Characterization of bacteriocins from Enterococcus faecium with activity against Listeria monocytogenes Arihara, K.;Robert, G.C.;John, B.L. https://doi.org/10.1016/0168-1605(93)90178-J
  32. J. Appl. Microbiol. v.95 Characteristics and identification of enterocins produced by Enterococcus faecium JCM 5804 Park, S.H.;Itoh, K.;Fujisawa, T. https://doi.org/10.1046/j.1365-2672.2003.01975.x
  33. Food Microbiol. v.18 Enterococcus faecium P21: a strain occurring naturally in dry-fermented sausages producing the class 11 bacteriocins enterocin A and enterocin B Herranz, C.;Casaus, P.;Mukhopadhyay, S.;Martinez, J.M.;Rodriguez, J.M.;Nes, I.F.;Hernandez, P.E.;Cintas, L.M. https://doi.org/10.1006/fmic.2000.0382
  34. J. Bacteriol. v.180 Enterocins L50A and L50B, two novel bacteriocins from Enterococcus faecium L50, are related to staphylococcal hemolysins Cintas, L.M.;Casaus, P.;Holo, H.;Hernandez, P.E.;Nes, I.F.;Havarstein, L.S.