The Effect of Reaction Temperature and Volume in the Sonolysis of 1,4-Dioxane

1,4-Dioxane의 초음파 처리시 반응 온도와 부칙의 영향

  • Son, Hyun-Seok (Institute of Health & Environment, Seoul National University) ;
  • Choi, Seok-Bong (Center for Nanoscale Science and Engineering, North Dakota State University) ;
  • Eakalak, Khan (Department of Civil Engineering and Construction, North Dakota State University) ;
  • Zoh, Kyung-Duk (Institute of Health & Environment, Seoul National University)
  • 손현석 (서울대학교 보건대학원 환경보건학과) ;
  • 최석봉 ;
  • ;
  • 조경덕 (서울대학교 보건대학원 환경보건학과)
  • Published : 2005.10.31

Abstract

This research investigates the effects of sonication mode, reaction temperature and volume on sonolysis of 1,4-dioxane in order to increase the degradation efficiency and kinetics. The degradation efficiency in case with pulse mode was about 10 % higher than that in case with continuous mode. The degradation profiles in both cases, which were performed without the control of reaction temperature and in 1000 mL, were composed of three steps. However, 1,4-D was mainly degraded in the initiation step as the first portion and the acceleration step as the second portion. The initial step agreed with zero-order expression well, while the acceleration step could be fitted with pseudo 1st-order expression. The kinetic model in case with $5^{\circ}C$ and 300 mL conformed to pseudo 1st-order, while that in cases with $10^{\circ}C$ to $40^{\circ}C$ agreed with zero-order expression. The degradation efficiency and profile of 1,4-D in the experiment with $20^{\circ}C$ and 300 mL was higher and simpler than that in case with $20^{\circ}C$ and 1000 mL. The reaction temperature and volume influence bubble intensity, which was produced in sonication. The increase of bubble intensity induced to augment the production of OH radical in sonication.

이 연구는 초음파에 의한 1,4-dioxane(1,4-D)의 제거효율과 반응속도의 증가를 위해 초음파의 조사방식, 반응온도와 부피의 효과를 조사하였다. 초음파가 펄스방식으로 주사된 경우가 연속적으로 주사된 경우보다 약 10%의 1,4-D의 감소 효율의 증가를 보였다. 두 경우 모두 1000 mL와 반응온도가 고정되지 않은 조건에서 실시된 것으로 반응곡선은 도입단계, 가속단계, 그리고 안정화단계 등 3단계로 구분될 수 있었다. 실제로 1,4-D의 제거를 보이는 부분은 도입단계와 가속단계로 이들의 속도론적 특징은 도입단계와 가속 단계 각각 0차 반응과 유사일차반응과 부합하였다. 반면에 300 mL의 반응부피에서 온도를 고정한 경우에서는 3단계의 제거 유형을 보이지 않았다. $5^{\circ}C$로 고정한 경우만이 유사일차 반응과 부합하였고 그 이상의 온도에서는 0차 반응과 부합하였다. $20^{\circ}C$로 온도가 고정된 조건에서 반응부피 300 mL의 경우가 1000 mL 반응에서 보다 높은 분해 효율을 보였을 뿐만 아니라 단일한 제거 특성을 보였다. 이러한 반응 온도와 부피의 영향은 초음파 주사에 의해 생성되는 bubble의 강도에 영향을 주며 bubble의 강도가 높을수록 OH 라디칼의 생성이 증가되었다.

Keywords

References

  1. Merck Index. An encyclopedia of chemicals, drugs, and biologicals Budavari, S.
  2. Environ. Sci. Technol. v.34 Elucidation of the 1,4-dioxane decomposition pathway at discrete ultrasonic frequencies Beckett, M.A.;Hua, I. https://doi.org/10.1021/es000928r
  3. Environ. Sci. Technol. v.24 Occurrence and fate of organic solvent residues in anoxic groundwater at the gloucester landfill Lesage, S.;Jackson, R.E.;Priddle, M.W.;Riemann, P.G. https://doi.org/10.1021/es00074a016
  4. Chemical Safety Information from Intergovernmental Orgainzations Home Page
  5. Handbook of carcinogenic potency and genotoxicity databases Gold, L.S.;Zeiger, E.
  6. Environ. Eng. Sci. v.20 Occurrence and treatment of 1,4-dioxane in aqueous environments Zenker, M.J.;Borden, R.C.;Barlaz, M.A. https://doi.org/10.1089/109287503768335913
  7. Water Res. v.37 Enhanced sonochemical decomposition of 1,4-dioxane by ferrous iron Beckett, M.A.;Hua, I. https://doi.org/10.1016/S0043-1354(03)00005-8
  8. Ultrason. Sonochem. v.2 Power measurement in sonochemistry Ratoarinoro, Contamine, F.;Wilhelm, A.M.;Berlan, J.;Delmas, H. https://doi.org/10.1016/1350-4177(94)00010-P
  9. Chem. Eng. Sci. v.49 Modeling of a batch sonochemical reactor Prasad Naidu, D.V.;Rajan, R.;Kumar, R.;Gandhi, K.S.;Arakeri, V.H.;Chandrasekaran, S. https://doi.org/10.1016/0009-2509(94)80024-3
  10. Ultrason. Sonochem. v.4 Ultrasound induced aqueous polycyclic aromatic hydrocarbon reactivity Wheat, P.E.;Tumeo, M.A. https://doi.org/10.1016/S1350-4177(96)00017-X
  11. Ind. Eng. Chem. Res. v.40 Sonochemistry: environmental science and engineering applications Adewuyi, Y.G. https://doi.org/10.1021/ie010096l
  12. Ind. Eng. Chem. Res. v.41 Sonochemical oxidation of carbon disulfide in aqueous solutions: reaction kinetics and pathway Adewuyi, Y.G.;Appaw, C. https://doi.org/10.1021/ie020069a
  13. Journal of Cleaner Production v.12 Ultrasonic treatment of liquid waste containing EDTA Chitra, S.;Paramasivan, K.;Sinha, P.K.;Lal, K.B. https://doi.org/10.1016/S0959-6526(03)00034-9
  14. Water Res. v.37 Sonochemical destruction of free and metal-binding ethylene-diaminetetaacetic acid Frim, J.A.;Rathman, J.F.;Weavers, L.K. https://doi.org/10.1016/S0043-1354(03)00169-6
  15. Ind. Eng. Chem. Res. v.38 Sonochemistry: science and engineering Thompson, L.H.;Doraiswamy, L.K. https://doi.org/10.1021/ie9804172
  16. Ind. Eng. Chem. Res. v.41 Sonochemical oxidation of carbon disulfide in aqueous solutions: reaction kinetics and pathways Yusuf, G.A.;Collins, A. https://doi.org/10.1021/ie020069a
  17. J. Phys. chem. A v.106 Sonolytic degradation of phthalic esters in aqueous solutions: acceleration of hydrolysis by sonochemical action Yim, B.;Nagata, Y.;Maeda, Y. https://doi.org/10.1021/jp011896c
  18. Ultrasonics v.28 Sonochemistry of volatile and non-volatile solutes in aqueous solutions: e.p.r. and spin trapping studies Riesz, P.;Kondo, T.;Krishna, C. https://doi.org/10.1016/0041-624X(90)90035-M
  19. Water Res. v.35 Ultrasonic irradiation of dichlorvos: decomposition mechanism Schramm, J.D.;Hua, I. https://doi.org/10.1016/S0043-1354(00)00304-3
  20. Ultrason. Sonochem. v.9 About the Janus double-horn sonicator and its use in quantitative homogenous sonochemistry Segebarth, N.;Eulaerts, O.;Kegelaers, Y.;Vandercammen, J.;Reisse, J. https://doi.org/10.1016/S1350-4177(01)00112-2
  21. Environmental organic chemistry Schwarzenbach, S.P.;Gschwend, P.M.;Imbodem, D.M.