Bioactive Foam Reactors for the Enhanced Biological Degradation of Toluene

계면활성제 거품을 이용한 미생물반응기에서의 기체상 톨루엔 분해

  • Kim, Yong-Sik (Civil and Environmental Engineering, Korea University) ;
  • Son, Young-Kyu (Civil and Environmental Engineering, Korea University) ;
  • Khim, Jee-Hyung (Civil and Environmental Engineering, Korea University) ;
  • Song, Ji-Hyeon (Civil and Environmental Engineering, Sejong University)
  • 김용식 (고려대학교 토목환경공학과) ;
  • 손영규 (고려대학교 토목환경공학과) ;
  • 김지형 (고려대학교 토목환경공학과) ;
  • 송지현 (세종대학교 토목환경공학과)
  • Published : 2005.05.31

Abstract

Biofilters packed with various materials have emerged as a sustainable technology for the treatment of volatile organic compounds (VOCs); however, problems including low performance and clogging are commonly encountered. Recently, a bioactive foam reactor (BFR) using surfactants has been suggested to ensure efficient and stable VOCs removal performance. This study was mainly conducted to investigate the feasibility of BFRs using toluene as a model compound. Prior to bioreactor studies, a series of bottle tests were used to select a suitable surfactant for the BFR application. Experimental results of the batch bottle tests indicated that TritonX-100 was the most appropriate one among the surfactants tested, since it showed a minimal effect on the toluene biodegradation rate while the other surfactants lowered the toluene biodegradation rate significantly. Using the selected surfactant, the BFR performance was determined by changing operating parameters including gas residence time and toluene loading. As the gas residence time increased from 0.5 minutes to 2 minutes, the toluene removal efficiency increased from approximately 50% to 80%. In addition, an increase of the toluene loading from $38\;g/m^3/hr$ to $454\;g/m^3/hr$ resulted in a decrease of toluene removal efficiency from approximately 70% to 20%. The BFR had a maximum elimination capacity of $108\;g/m^3/hr$ for toluene, which was much higher than those generally reported in the literature. The high toluene-elimination performance indicates that the BFR be a potential alternative to the conventional, packed-type biofilters. However, the limitation of toluene solubilization and foam stability at either high or low gas flow rate are still problems to be challenged.

휘발성 유기화합물(VOCs)의 제거를 위한 담체충진형 바이오필터법은 운전이 용이하고 처리비용이 낮다는 장점에도 불구하고 낮은 운전성능과 막힘현상등의 문제를 안고 있다. 이에 대한 대안으로 계면활성제로 형성된 거품을 사용해 VOCs의 물질전달율과 분해효율을 향상시킨 미생물반응기(BFR)가 제안되었다. 본 연구는 VOCs 저감기술로서 BFR의 적용가능성을 확인하기 위하여 수행되었다. 우선, BFR에 사용될 계면활성제를 선정하기 위해, 4종류의 계면활성제를 대상으로 회분실험을 수행하였으며, 실험결과 TritonX-100이 미생물의 생분해도에 미치는 영향이 가장 적어 BFR에 적용하기 적합한 계면활성제로 판명되었다. 선정된 계면활성제를 BFR에 첨가하고, 반응기 내에 유입되는 가스의 체류시간과 톨루엔 유입부하량을 변화시키면서 반응기의 운전성능을 평가하였다. 가스체류시간이 0.5분에서 2분으로 증가하면서 반응기의 톨루엔 분해율도 50%에서 80%로 증가하였다. 그러나 톨루엔 유입부하량이 $38\;g/m^3/hr$에서 $454\;g/m^3/hr$으로 증가하면서 톨루엔 분해율은 70%에서 20%로 감소하였다. 본 실험에서는 BFR의 최대분해능은 $108\;g/m^3/hr$로 나타나 기존 담체 충진형 바이오필터에 비해 높았으며, 따라서 BFR 시스템이 기존의 담체를 이용하는 생물학적 VOCs 저감기술에 대한 대안으로서 가능성이 있음을 알 수 있었다. 하지만, 높거나 낮은 가스유속에서 거품이 안정적으로 발생하지 않는 점 등은 여전히 해결해야할 과제로 남아있다.

Keywords

References

  1. Devinny, J. S., Deshusses, M. A. and Webster, T. S., Biofilteration for air pollution control, CRC Lewis Publishers, New York, pp. 10-15(1999)
  2. Cherry, R. S. and Thompson, D. N., 'The shift from growth to nutrient-limited maintenance kinetics during acclimation of a biofilter,' Biotechnol. Bioeng., 56, 330 - 339(1997) https://doi.org/10.1002/(SICI)1097-0290(19971105)56:3<330::AID-BIT11>3.0.CO;2-K
  3. Cox, H. H. J. and Deshusses, M. A., 'Biomass control in waste air biotrickling filters by protozoan predaion,' Biotechnol. Bioeng., 62, 216-224(1999) https://doi.org/10.1002/(SICI)1097-0290(19990120)62:2<216::AID-BIT12>3.0.CO;2-4
  4. Laurenzis, A., Heits, H., Wubker, S. M., Heinze, D., Friedrich, C., and Werner, U., 'Continuous biological waste gas treatment in stirred trickle-bed reactor with discontinuous removal of biomass,' Biotechnol. Bioeng., 57, 497 - 503(1998) https://doi.org/10.1002/(SICI)1097-0290(19980220)57:4<497::AID-BIT14>3.0.CO;2-9
  5. Saba, F., Schneider, T., and Fischer, K., 'Improvement and application of high-efficiency biofilters,' In proceedings of the 1995 USC-TRG conference on biofiltration. Tustin, CA, pp. 217 - 224(1995)
  6. Song, J. and Kinney, K. A., 'Effect of vapor-phase bioreactor operation on biomass accumulation, distribution, and activity,' Biotechnol. Bioeng., 68, 508-516 (2000) https://doi.org/10.1002/(SICI)1097-0290(20000605)68:5<508::AID-BIT4>3.0.CO;2-P
  7. Yang, C., Suidan, M. T., Zhu, X., and Kim, B. J., 'Com-parison of structures and performances of two types of rotating biofilters for VOC removal,' In proceedings of the 2002 1995 USC-TRG conference on biofiltration. Tustin, CA: The Reynolds Group., pp. 231 - 240(2002)
  8. Phipps, D. W., 'Biodegradation of volatile organic contaminants from air using biologically activated foam,' US Patent, No. 5,714,379(1998)
  9. Kan, E. and Deshusses, M. A., 'Development of foamed emulsion bioreactor for air pollution control,' Biotechnol. Bioeng., 84, 204-244(2003)
  10. Maurice, R., Handbook of Surfactants 2nd Ed., Porter & Associates(1994)
  11. Chang, M., Huang, C., and Shu, H., 'Effects of surfactants on extraction of phenanthrene in spiked sand,' Chemosphere, 41, 1295 -1300(2000) https://doi.org/10.1016/S0045-6535(99)00527-5
  12. Deshpande, S., Shiau, B. J., Wade, D., Sabatini, D. A., and Harwell, J. H., 'Surfactant selection for enhancing ex situ soil washing,' Water Res., 33, 351-360(1999) https://doi.org/10.1016/S0043-1354(98)00234-6
  13. Deeb, R. A. and Alvarez-Cohen, L., 'Temperature effect and substrate influence during the aerobic biotransformation of BTEX mixtures by toluene-enriched consortia and Rhodococcus rhodochrous,' Biotechnol. Bioeng., 62, 526 - 536(1999) https://doi.org/10.1002/(SICI)1097-0290(19990305)62:5<526::AID-BIT4>3.0.CO;2-8
  14. Ridgway, H. F., Safarik, J., Phipps, D., Carl, P., and Clark, D., 'Identification and catabolic activity of wellderived gasoline-degradation bacterial from a contaminated aquifer,' Appl. Environ. Microbiol., 56, 3565-3575(1990)
  15. Yeh, D. H., Pennell, K. D., and Pavlostathis, S. G., 'Effect of Tween surfactants on methanogenesis and microbial reductive dechlorination of hexachlorobenzene,' Environ. Toxicol. Chem., 18, 1408 - 1416(1999) https://doi.org/10.1897/1551-5028(1999)018<1408:EOTSOM>2.3.CO;2
  16. Hill, R. M., 'Siloxane surfactant,' Silicone surfactants, Hill, R. M., (Eds.), Marcel Dekker Inc., New York(1999)
  17. Cserhati, T., Forgacs, E., and Oros G., 'Biological activity and environmental impact of anionic surfactants,' Environ. international, 28, 37 - 348(2002)
  18. Goudar, C., Strevett, L., and Grego, J., 'Competitive substrate biodegradation during surfactant-enhanced remediation,' J. Environ. Eng., 125, 1142 -1148(1999) https://doi.org/10.1061/(ASCE)0733-9372(1999)125:12(1142)
  19. Kim, I., Park, J.-S., and Kim, K.-W., 'Enhanced biodegradation of polycyclic aromatic hydrocarbons using nonionic surfactants in soil slurry,' Appl. Geochem., 16, 1419-1428(2001) https://doi.org/10.1016/S0883-2927(01)00043-9
  20. Deshusses, M. A. and Johnson, C. T., 'Development and validation of a simple protocol to rapidly determine the performance of biofilters for VOC treatment,' Environ. Sci. Technol., 34, 461-467(2000) https://doi.org/10.1021/es9909172