영양원의 제한에 의한 수돗물에서의 세균재증식능 억제

Controlling Bacterial Regrowth Potential by the Limitation of Nutrients in Drinking Water

  • 오정우 (동경대학 대학원 도시공학과 환경공학)
  • Oh, Jung-Woo (Department of Urban Engineering, School of Engineering, University of Tokyo)
  • 발행 : 2005.04.30

초록

본 연구에서는, 충족농도를 기준으로 영양원를 제한한 경우와 탄소원 및 질소원이 각각 두 종류씩 혼재되어 있는 경우에 대해, 수돗물 토착세균 및 Pseudomonas fluorescence P17을 접종균으로 한 BRP법을 이용하여 세균의 재증식 특성을 연구하였다. 세균재증식능은 영양원의 제한에 의해 억제되는 것으로 나타났으며, 두가지 이상의 영양원이 동시에 제한된 경우, 세균재증식능의 억제가 더욱 증가되는 상승효과를 관찰할 수 있었다. 특히 제한된 영양원에 인이 포함되어 있는 경우, 상대적으로 더욱 낮은 세균재증식능을 나타내고 있었다. 그러나 $NO_3^-$-N에 대해서는 농도가 증가할수록 세균재증식능이 감소하는 것으로 나타났다. 탄소원으로써 Glucose 및 Acetate 질소원으로 $NH_4^$-N 및 $NO_3^-$-N가 혼재되어 있는 경우를 대상으로 세균의 재증식 특성을 조사한 결과, 탄소원에 대해서는 Glucose 및 Acetate가 혼재되어 있는 경우가 각각의 탄소원을 단독으로 주입했을 경우보다 세균재증식능이 높게 나타났다. 또한 질소원에 대해서는 $NH_4^+$-N의 주입비율이 높아짐에 따라 세균재증식능이 증가하는 것으로 나타났다.

In this study, the profiles of the bacterial regrowth of indigenous bacteria in tap water and Pseudomonas fluorescence P17 were investigated for cases when carbon (glucose), and/or nitrogen ($NO_3^-$-N), and/or phosphorus ($PO_4^{3-}$-P) were added below sufficient nutrient concentration (SNC) and when carbon sources (glucose and acetate) and nitrogen sources ($NH_4^+$-N and $NO_3^-$-N) were added together. The bacterial regrowth was decreased with limitation of nutrients, and were lowered relatively in the sample, which plural nutrients were limited. In addition, phosphate might be the effective nutrient to control the bacterial regrowth in drinking water because the bacterial regrowth was significantly decreased by the limitation of phosphate. In contrast, the bacterial regrowth was retarded with increasing the concentration of $NO_3^-$-N. For simultaneously adding carbon(glucose or acetate) and nitrogen sources ($NH_4^+$-N and $NO_3^-$-N), the regrowth counts appeared highly in the condition, for both glucose and acetate. And, the regrowth was increased with increasing $NH_4^+$-N concentration as a nitrogen source.

키워드

참고문헌

  1. LeChevallier, M. W., Cawthon, C. D., and Lee, R. G., 'Inactivation of bacterial biofilm,' Appl. Environ. Microbiol., 54, 2492-2499(1988)
  2. Van der Kooij, D., 'Assimilable organic carbon (AOC) in drinking water,' p. 57-87. In G. A McFeters (ed.), Drinking Water Microbiology-1990. Springer-Verlag, New York, N.Y.(1990)
  3. Bellar, T. A., Lichtenberg, J. J., and Kroner, R. C., 'The occurrence of organohalides in chlorinated drinking waters,' J. AWWA, 66, 703-707(1974) https://doi.org/10.1002/j.1551-8833.1974.tb02129.x
  4. Meier, J. R, Ringhand, H. P., Coleman, W. E., Schenk, K. M., Munch, J. W., Streicher, R P., Kaylor, W. H., and Kopfler, F. C., 'Mutagenic by-products from chlorination of humic acid,' Environ. Health Perspect., 69, 101-107(1986) https://doi.org/10.2307/3430377
  5. LeChevallier, M. W., Schulz, W., and Lee, R G., 'Bacterial nutrients in drinking water,' Appl. Environ. Microbiol., 57, 857-862(1991)
  6. Van der Kooij, D., 'Assimilable organic carbon as an indicator of bacterial regrowth,' J. AWWA, 84, 57-65 (1992) https://doi.org/10.1002/j.1551-8833.1992.tb07305.x
  7. Owen, D. M., Amy, G. L., Chowdhury, Z. K., Paode, R, McCoy, G., and Viscosii, K., 'NOM characterization and treatability,' J. AWWA, 87, 46-63(1995)
  8. Miettinen, I. T., Vartiainen, T., and Martikainen, P. J., 'Contamination of drinking water,' Nature, 381, 654-655(1996)
  9. Miettinen, I. T., Vartiainen, T., and Martikainen, P. J., 'Phosphorus and bacterial growth in drinking water,' Appl. Environ. Microbiol., 63, 3242-3245(1997)
  10. Sathasivan, A., Ohgaki, S., Yamamoto, K., and kamiko, N., 'Role of inorganic phosphorus in controlling regrowth in water distribution system,' Water Sci. Technol., 35, 37-44(1997)
  11. Sathasivan, A., and Ohgaki, S., 'Application of new bacterial regrowth potential method for water distribution system a clear evidence of phosphorus limitation,' Water Res., 33, 137-144(1999) https://doi.org/10.1016/S0043-1354(98)00158-4
  12. Oh, J. W., 'Evaluation of bacterial regrowth potential in drinking water system using cell cycle parameters,' Doctoral thesis, Univ. of Tokyo(2004)
  13. 吳政祐, 渡部 雅智, 神通 浩二, 片山 浩之, 大垣 眞一郞, 'フローサイトメトリーを用いた細菌再增殖能測定法の開發及びその適用に關する硏究,' 日本水道協會雜誌, 73(2), 2-15(2004)
  14. Philippe, L., Servais, P., Agogue, H., Courties, C., and Joux, F., 'Does the high nucleic acid content of individual bacterial cells allow us to discriminate between active cells and inactive cells in aquatic system?,' Appl. Environ. Microbiol., 67, 1775-1782(2001). https://doi.org/10.1128/AEM.67.4.1775-1782.2001
  15. Stephan, J., Partensky, F., Marie, D., Casotti, R., and Vaulot, D., 'Cell cycle regulation by light in Prochlorococcus strains,' Appl. Environ. Microbiol., 67, 782-790(2001) https://doi.org/10.1128/AEM.67.2.782-790.2001
  16. Symons, J. M., et al., 'Natural organics reconnaissance survey for halogenated organics,' J. AWWA, 67, 634-647(1975) https://doi.org/10.1002/j.1551-8833.1975.tb02318.x
  17. Van der Kooij, D., Visser, A., and Hijnen, A. M., 'Determining the concentration of easily assimilable organic carbon in drinking water,' J. AWWA, 74, 540-545(1982) https://doi.org/10.1002/j.1551-8833.1982.tb05000.x
  18. Vartiainen, T., Liimatainen, A., and Kauranen, P., 'The use of size exclusion columns in determination of the quality and quantity of humus in raw waters and drinking waters,' Sci. Total Environ., 62, 75-84(1987) https://doi.org/10.1016/0048-9697(87)90484-0
  19. Markku, J. L., Miettinen, I. T., Vartiainen, T., and Martikainen, P. J., 'A New Sensitive Bioassay for Determination of Microbially Available Phosphorus in Water,' Appl. Environ. Microbiol., 63, 3242-3245(1999)
  20. Chandy, J. P., and Angles, M. L., 'Determination of nutrients limiting biofilm formation and the subsequent impact on disinfectant decay,' Water Res., 35, 2677-2682(2001) https://doi.org/10.1016/S0043-1354(00)00572-8
  21. Roger, Y. S., Ingraham, J. L., Wheelis, M. L., and Painter, P. R., 'The microbial world,' Prentice-Hall (1986)
  22. Wetzel, R. G., 'Limnology,' W.B. Saunders Company, Philadelphia, USA(1975)
  23. Toolan, T., Wehr, J., and Findlay, S., '(Inorganic phosphorus stimulation of bacterioplankton production in a meso-eutrophic lake,' Appl. Environ. Microbiol., 57, 2074-2078(1991)
  24. Chawala, C. and Ju., L. K, 'Degradation of n-Hexadecane and its metabolites by Pseudomonas aeruginosa under microaerobic and anaerobic denitrifying condition,' Appl. Environ. Microbiol., 66, 493-498(2000) https://doi.org/10.1128/AEM.66.2.493-498.2000
  25. Ma, J. F., Hager, P. W., Howell, M. L., Phibbs, P. V., and Hassett, D. J., 'Cloning and Charaterization of the Pseudomonas aeruginosa zwf gene encoding glucose-6phosphate dehydrogenase, an enzyme important in resistance to methyl viologen (Paraquat),' J. Bacteriol., 180, 1741-1749(1998)
  26. Christophe, R. and Olsson, L., 'Dynamic responses of Pseudomonas fluorescens DF57 to nitrogen or carbon source addition,' J. Biotech., 86, 39-50(2001) https://doi.org/10.1016/S0168-1656(00)00401-6
  27. Van der Kooij, D. and Hijnen, W. M., 'Substrate utilization by an oxalate-consuming Spirillum species in relation to its growth in ozonated water,' Appl. Environ. Microbiol., 47, 551-559(1984)