먹물버섯의 자가분해 과정에 대한 미세구조 연구

Ultrastructural Studies on the Autolysis of Coprinellus congregatus

  • 발행 : 2005.12.01

초록

먹물버섯의 하나인 Coprinellus congregatus에서는 자실체가 성숙된 후 곧 자가분해되어 먹물로 전환된다. 이 자가분해 과정과 관련된 가수분재 효소의 역할을 이해하기 위한 첫 단계로서, 자가분해과정과 연관된 미세구조의 변화를 전자현미경으로 조사하였다. 자실체의 성숙과정에서 자실층과 자실하층에 존재하는 모든 세포질은 새로운 포자의 형성을 위하여 포자로 이동되는 것으로 보인다. 조직 내의 세포질의 고갈과 포자의 완성은 조직 내의 세포벽의 분해를 야기하는 것으로 보이며, 자실층과 자실하층의 세포벽은 동시적으로 분해 되는 것으로 생각된다. 본 연구는 먹물버섯의 자가분해가 세포질의 분해가 아닌 세포벽의 분해과정에 의한 것임을 보여 주었으며, chitin 분해효소와 같은 가수분해 효소의 중요성을 제시하였다.

Coprinellus congregatus, known as an inky cap, is autolysed into ink soon after the maturation of the mushrooms. Electron microscopy was used to examine the ultrastructural changes associated with the autolysis as an initial step to understand the role of hydrolytic enzymes in this process. During the early stages of maturation of the mushrooms, most of cytoplasm of hymenial and subhymenial tissues seemed to be transported to the developing basidiospores. The depletion of cytoplasm within the tissues and the maturation of the basidiospores may initiate the degradation of the cell walls of the tissues. Both hymenial and subhymenial tissues seemed to degraded at the same time. This study suggested that the critical steps in the autolysis of mushrooms is not the degradation of the cytoplasm, but the degradation of the cell wall by hydrolytic enzymes such as chitinases.

키워드

참고문헌

  1. Bahmed, K., R. Bonaly, M. Wathier, B. Pucci, and J. Coulon. 2002. Change of cell wall chitin content in amphotericin B resistant Kluyveromyces strains. FEMS Microbiol. Lett. 216, 99-103 https://doi.org/10.1111/j.1574-6968.2002.tb11421.x
  2. Burton, K., J. Hammond, and T. Minamide. 1994. Protease activity in Agaricus bisporus during periodic fruiting (flushing) and sporophore development. Curr. Microbiol. 28, 275-278 https://doi.org/10.1007/BF01573205
  3. Ji, J. and D. Moore. 1993. Glycogen metabolism in relation to fruit body maturation in Coprinus cinereus. Mycol. Res. 97, 283-289 https://doi.org/10.1016/S0953-7562(09)81121-0
  4. Kamensky, M., M. Ovadis, I. Chet, and L, Chernin. 2003. Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biol. Biochem. 35, 323-331 https://doi.org/10.1016/S0038-0717(02)00283-3
  5. Mellado, E., G. Dubreucq, P. Mol, J. Safati, S. Paris, M. Diaquin, D. Holden, J. Rodriguez-Tudela, and P. Latge. 2003. Cell wall biogenesis in a double chitin synthase mutant (chsG-/chsE-) of Aspergillus fumigatus. Fungal Genet. Biol. 38, 98-109 https://doi.org/10.1016/S1087-1845(02)00516-9
  6. Moore-Landecker, E. 1990. Fundamentals of the fungi, 3rd ed., pp. 211-212. Prentice Hall
  7. Regula, K., K. Ens, and L. Kirshenbaum. 2003. Mitochondria-assisted cell suicide: a license to kill. J. Mol. Cell. Cardiol. 35, 559-567 https://doi.org/10.1016/S0022-2828(03)00118-4
  8. Ross, I. K. 1982. Localization of carpophore initiation in Coprinus congregatus. J. Gen. Microbiol. 128, 2755-2762
  9. Sundstrom, P. 2003. Fungal pathogens and host response. ASM News 69, 127-131
  10. Svitil, A, and D. Kirchman. 1998. A chitin-binding domain in a marine bacterial chitinase and other microbial chitinases: implications for the ecology and evolution of 1,4-${\beta}$-glycan- ases. Microbiol. 144, 1299-1308 https://doi.org/10.1099/00221287-144-5-1299