탄저 치사독소 처리에 의한 생쥐 대식세포의 단백질체 발현 양상 분석

Proteome Profiling of Murine Macrophages Treated with the Anthrax Lethal Toxin

  • 정경화 (한양대학교 과학기술대학 분자생명과학부) ;
  • 서귀문 (한양대학교 과학기술대학 분자생명과학부) ;
  • 김성주 (한양대학교 과학기술대학 분자생명과학부) ;
  • 김지천 (한양대학교 과학기술대학 분자생명과학부) ;
  • 오선미 (한양대학교 과학기술대학 분자생명과학부) ;
  • 오광근 (바이오기능대학 바이오배양공정학과) ;
  • 채영규 (한양대학교 과학기술대학 분자생명과학부)
  • 발행 : 2005.12.01

초록

탄저 치사독소는 생쥐 대식세포 (RAW 264.7)의 유전자 발현에 많은 변화를 초래한다. 이들 변화를 초래하는 치사독소의 역할은 아직 확실하게 밝혀지지 ???았다. 본 연구에서는, 치사독소가 처리된 생쥐 대식세포의 단백질 프로파일을 이차원 전기영동으로 분석하였고, MALDI-TOF 질량분석기를 사용하여 해당 단백질의 질량을 측정하였다. 펩타이드 질량 분석 데이터는 ProFound 데이터베이스를 이용하여 동정하였다. 차별화되어 발현된 단백질 중에서 절단된 mitogen-activated protein kinase kinase (Mek1)와 glucose-6-phosphate dehydrogenase (G6PD)가 치사독소 처리된 대식세포에서 각각 증가하였다. 치사독소를 처리하였을 경우, Mek1의 절단은 신호전달과정을 방해하고, 증가된 G6PD는 생성된 활성산소로부터 세포를 보호하는 역할을 하는 것으로 보인다. 단백질체 분석기술은 치사독소처리에 의한 생쥐 대식세포의 세포사멸 관련 단백질을 동정하는데 도움을 주어, 치사독소의 잠정적인 기질을 찾는데 유용할 것이다.

Intoxication of murine macrophages (RAW 264.7) with the anthrax lethal toxin (LeTx 100 ng/ml) results in profound alterations in the host cell gene expression. The role of LeTx in mediating these effects is unknown, largely due to the difficulty in identifying and assigning function to individual proteins. In this study, we have used two-dimensional polyacrylamide gel electrophoresis to analyze the protein profile of murine macrophages treated with the LeTx, and have coupled this to protein identification using MALDI-TOF mass spectrometry. Interpretation of the peptide mass fingerprint data has relied primarily on the ProFound database. Among the differentially expressed spots, cleaved mitogen-activated protein kinase kinase (Mek1) and glucose-6-phosphate dehydrogenase were increased in the LeTx treated macrophages. Mek1 acts as a negative element in the signal transduction pathway, and G6PD plays the role for the protection of the cells from the hyper-production of active oxygen. Our results suggest that this proteomic approach is a useful tool to study protein expression in intoxicated macrophages and will contribute to the identification of a putative substrate for LeTx.

키워드

참고문헌

  1. Agrawal, A., and B. Pulendran. 2004. Anthrax lethal toxin: a weapon of multisystem destruction. Cell. Mol. Life Sci. 61, 2859-2865 https://doi.org/10.1007/s00018-004-4251-4
  2. Beauregard, K.E., R.J. Collier, and J.A. Swanson. 2000. Proteolytic activation of receptor-bound anthrax protective antigen on macrophages promotes its internalization. Cell. Microbiol. 2, 251- 258 https://doi.org/10.1046/j.1462-5822.2000.00052.x
  3. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  4. Chopra, A.P., S.A. Boone, X. Liang, and N.S. Duesbery. 2003. Anthrax lethal factor proteolysis and inactivation of MAPK kinase. J. Biol. Chem. 278, 9402-9406 https://doi.org/10.1074/jbc.M211262200
  5. Chandra, H., P.K. Gupta, K. Sharma, A.R. Mattoo, S.K. Garg, W.N. Gade, R. Sirdeshmukh, K. Maithal, and Y. Singh. 2005. Proteome analysis of mouse macrophages treated with anthrax lethal toxin. Biochim. Biophys. Acta. 1747, 151-159 https://doi.org/10.1016/j.bbapap.2004.10.012
  6. Fico, A., F. Paglialunga, L. Cigliano, P. Abrescia, P. Verde, G. Martini, I. Iaccarino, and S. Filosa. 2004. Glucose-6-phosphate dehydrogenase plays a crucial role in protection from redox-stressinduced apoptosis. Cell Death Differ. 11, 823-831 https://doi.org/10.1038/sj.cdd.4401420
  7. Guidi-Rontani, C., M. Weber-Levy, M. Mock, and V. Cabiaux. 2000. Translocation of Bacillus anthracis lethal and edema factors across endosome membranes. Cell. Microbiol. 2, 259-264 https://doi.org/10.1046/j.1462-5822.2000.00057.x
  8. Hanna, P.C. 1999. Lethal toxin actions and their consequences. J. Appl. Microbiol. 87, 285-287 https://doi.org/10.1046/j.1365-2672.1999.00891.x
  9. Hanna, P.C., B. Kruskal, R. Ezekowitz, B. Bloom, and R.J. Collier. 1994. Role of macrophages oxidative burst in the action of anthrax lethal toxin. Mol. Med. 1, 7-18
  10. Krantz, B.A., R.A. Melnyk, S. Zhang, S.J. Juris, D.B. Lacy, Z. Wu, A. Finkelstein, and R.J. Collier. 2005. A phenylalanine clamp catalyzes protein translocation through the anthrax toxin pore. Science 309, 777-781 https://doi.org/10.1126/science.1113380
  11. Klimpel, K.R., N. Arora, and S.H. Leppla. 1994. Anthrax toxin lethal factor contains a zinc metalloprotease consensus sequence which is required for lethal toxin activity. Mol. Microbiol. 13, 1093-1100 https://doi.org/10.1111/j.1365-2958.1994.tb00500.x
  12. Milne, J.C., D. Furlong, P.C. Hanna, and R.J. Collier. 1994. Anthrax protective antigen forms oligomers during intoxication of mammalian cells. J. Biol. Chem. 269, 20607-20612
  13. Mock M., and A. Fouet. 2001. Anthrax. Annu. Rev. Microbiol. 55,647-671 https://doi.org/10.1146/annurev.micro.55.1.647
  14. Molestina, R.E., J.B. Klein, R.D. Miller, W.H. Pierce, J.A. Ramirez, and J.T. Summersgill. 2002. Proteomic analysis of dif-ferentially expressed Chlamydia pneumoniae genes during persistent infection of Hep-2 cells. Infect. Immun. 6, 2976-2981
  15. Oakley, B.R., D.R. Kirsch, and N.R. Morris. 1980. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal. Biochem. 105, 361-363 https://doi.org/10.1016/0003-2697(80)90470-4
  16. Pizarro-Cerda, J., R. Jonquieres, E. Gouin, J. Vandekerckhove, J. Garin, and P. Cossart. 2002. Distinct protein patterns associated with Listeria monocytogenes InlA- or InlB-phagosomes. Cell. Microbiol. 4, 101-115 https://doi.org/10.1046/j.1462-5822.2002.00169.x
  17. Seo, G.M., S.J. Kim, J.C. Kim, D.H. Nam, M.Y. Yoon, B.S. Koo, and Y.G. Chai. 2004. Targeting of Bacillus anthracis interaction factors for human macrophages using two-dimensional gel electrophoresis. Biochem. Biophys. Res. Commun. 322, 854-859 https://doi.org/10.1016/j.bbrc.2004.07.190
  18. Seo, G.M., S.J. Kim, and Y.G. Chai. 2004. Rapid profiling of the infection of Bacillus anthracis on human macrophages using SELDI-TOF mass spectroscopy. Biochem. Biophys. Res. Commun. 325, 1236-1239 https://doi.org/10.1016/j.bbrc.2004.10.146
  19. Shevchenko, A., M. Wilm, O. Vorm, and M. Mann. 1996. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850-858 https://doi.org/10.1021/ac950914h
  20. Smith, H. 2000. Discovery of the anthrax toxin: the beginning of in vivo studies on pathogenic bacteria. Trends Microbiol. 8, 199-200 https://doi.org/10.1016/S0966-842X(00)01755-8
  21. Smith, H. and H.B. Stoner. 1967. Anthrax toxic complex. Fed. Proc. 26,1554-1557
  22. Tian, W.N., L.D. Braunstein, K. Apse, J. Pang, M. Rose, X. Tian, and R.C. Stanton. 1999. Importance of glucose-6-phosphate dehydrogenase activity in cell death Am. J. Physiol. 276, C1121-C1131
  23. Tonello, F., P. Ascenzi, and C. Montecucco. 2003. The metalloproteolytic activity of the anthrax lethal factor is substrate-inhibited. J. Biol. Chem. 274, 40075-40078
  24. Vitale, G., L. Bernardi, G. Napolitani, M. Mock, and C. Montecucco. 2000. Susceptibility of mitogen-activated protein kinase kinase family members to proteolysis by anthrax lethal factor. Biochem. J. 352, 739-745 https://doi.org/10.1042/0264-6021:3520739