Boundary Control of Axially Moving Continua: Application to a Zinc Galvanizing Line

  • Kim Chang-Won (Department of Mechanical and Intelligent Systems Engineering, Pusan National University) ;
  • Park Hahn (Department of Mechanical and Intelligent Systems Engineering, Pusan National University) ;
  • Hong Keum-Shik (School of Mechanical Engineering, Pusan National University)
  • Published : 2005.12.01

Abstract

In this paper, an active vibration control of a tensioned, elastic, axially moving string is investigated. The dynamics of the translating string are described with a non-linear partial differential equation coupled with an ordinary differential equation. A right boundary control to suppress the transverse vibrations of the translating continuum is proposed. The control law is derived via the Lyapunov second method. The exponential stability of the closed-loop system is verified. The effectiveness of the proposed control law is simulated.

Keywords

References

  1. V. A. Bapat and P. Srinivasan, 'Nonlinear transverse oscillations in traveling strings by the method of harmonic balance,' Journal of Applied Mechanics, vol. 34, pp. 775-777, 1967 https://doi.org/10.1115/1.3607783
  2. H. Benaroya, Mechanical Vibration: Analysis, Uncertainties, and Control, Prentice Hall, New Jersey, 1998
  3. G. F. Carrier, 'On the nonlinear vibration problem of the elastic string,' Quarterly of Applied Mathematics, vol. 3, pp. 157-165, 1945 https://doi.org/10.1090/qam/12351
  4. D. Chen, 'Adaptive control of hot-dip galvanizing,' Automatica, vol. 31, no. 5, pp. 715-733, 1995 https://doi.org/10.1016/0005-1098(94)00132-3
  5. J. Y. Choi, K. S. Hong, and K. J. Yang, 'Exponential Stabilization of an Axially Moving Tensioned Strip by Passive Damping and Boundary Control,' Journal of Vibration and Control, vol. 10, no. 5, pp. 661-682, 2004 https://doi.org/10.1177/1077546304038103
  6. K. Daisuke, N. Masatoshi, G. Satoru, and K. Nobuhiro, 'Flexible motion realized by forcedfree control: Pull-out work by an articulated robot arm,' International Journal of Control, Automation, and Systems, vol. 1, no. 4, pp. 464-473, 2003
  7. M. P. Fard and S. Sagatun, 'Exponential stabilization of a transversely vibrating beam via boundary control,' Journal of Sound and Vibration, vol. 240, no. 4, pp. 613-622, 2001 https://doi.org/10.1006/jsvi.2000.3252
  8. R. F. Fung, J. W. Wu, and S. L. Wu, 'Exponential stability of an axially moving string by linear boundary feedback,' Automatica, vol. 35, no. 1, pp. 177-181, 1999a https://doi.org/10.1016/S0005-1098(98)00173-3
  9. R. F. Fung, J. W. Wu, and S. L. Wu, 'Stabilization of an axially moving string by nonlinear boundary feedback,' ASME Journal of Dynamic Systems, Measurement, and Control, vol. 121, no. 1, pp. 117-120, 1999b https://doi.org/10.1115/1.2802428
  10. R. F. Fung, J. H. Chou, and Y. L. Kuo, 'Optimal boundary control of an axially moving material system,' ASME Journal of Dynamic Systems, Measurement, and Control, vol. 124, no. 1, pp. 55-61, 2002a https://doi.org/10.1115/1.1435364
  11. R. F. Fung, J. W. Wu, and P. Y. Lu, 'Adaptive boundary control of an axially moving string system,' Journal of Vibration and Acoustics, vol. 124, no. 3, pp. 435-440, 2002b https://doi.org/10.1115/1.1476381
  12. K. S. Hong, C. W. Kim, and K. T. Hong, 'Boundary control of an axially moving belt system in a thin-metal production line,' International Journal of Control, Automation, and Systems, vol. 1, no. 2, pp. 55-67, 2004
  13. H. Khalil, Nonlinear Systems, Prentice Hall, 2nd edition, 1996
  14. C. W. Kim, K. S. Hong, and H. Park, 'Boundary control of an axially moving string: Actuator dynamics included,' Journal of Mechanical Science and Technology, vol. 19, no. 1, pp. 40-50, 2005 https://doi.org/10.1007/BF02916103
  15. W. H. Kwon, S. H. Han, and C. K. Ahn, 'Advanced in nonlinear predictive control: A survey on stability and optimality,' International Journal of Control, Automation, and Systems, vol. 2, no. 1, pp. 15-22, 2004
  16. H. Laousy, C. Z. Xu, and G. Sallet, 'Boundary feedback stabilization of a rotating body-beam system,' IEEE Trans. on Automatic Control, vol. 41, no. 2, pp. 241-244, 1996 https://doi.org/10.1109/9.481526
  17. S. Y. Lee and C. D. Mote, 'Vibration control of an axially moving string by boundary control,' ASME Journal of Dynamics Systems, Measurement, and Control, vol. 118, no. 1, pp. 66-74, 1996 https://doi.org/10.1115/1.2801153
  18. S. Y. Lee and C. D. Mote, 'A generalized treatment of the energetics of translating continua, Part I: Strings and second order tensioned pipes,' Journal of Sound and Vibration, vol. 204, no. 5, pp. 717-734, 1997 https://doi.org/10.1006/jsvi.1996.0945
  19. S. Y. Lee and C. D. Mote, 'Wave characteristics and vibration control of translating beams by optimal boundary damping,' Journal of Vibration and Acoustics, vol. 121, no. 1, pp. 18-25, 1999 https://doi.org/10.1115/1.2893942
  20. S. Y. Lee, J. C. Sa, and M. H. Lee, 'Free vibration and dynamic stability of the axially moving continuum with time-varying length,' Korea Society for Noise and Vibration Engineering, vol. 12, no. 4, pp. 272-279, 2002 https://doi.org/10.5050/KSNVN.2002.12.4.272
  21. Y. Li and C. D. Rahn, 'Adaptive vibration isolation for axially moving beams,' IEEE/ASME Trans. on Mechatronics, vol. 5, no. 4, pp. 419-428, 2000 https://doi.org/10.1109/3516.891053
  22. Y. Li, D. Aron, and C. D. Rahn, 'Adaptive vibration isolation for axially moving strings: Theory and experiment,' Automatica, vol. 38, no. 3, pp. 379-389, 2002 https://doi.org/10.1016/S0005-1098(01)00219-9
  23. I. Masahiko and Y. Hiroshi, 'Vibration suppression control for an articulated robot:Effects of model-based control applied to a waist axis,' International Journal of Control, Automation, and Systems, vol. 1, no. 3, pp. 263-270, 2003
  24. D. B. McIver, 'Hamilton's principle for systems of changing mass,' Journal of Engineering Mathematics, vol. 7, no. 3, pp. 249-261, 1973 https://doi.org/10.1007/BF01535286
  25. O. Morgul, 'Dynamics boundary control of a Euler-Bernoulli beam,' IEEE Trans. on Automatic Control, vol. 37, no. 5, pp. 639-642, 1992 https://doi.org/10.1109/9.135504
  26. C. D. Mote, 'A study of band saw vibration,' Journal of the Franklin Institute, vol. 279, pp. 430-444, 1965 https://doi.org/10.1016/0016-0032(65)90273-5
  27. J. C. Oostveen and R. F. Curtain, 'Robustly stabilizing controllers for dissipative infinitedimensional systems with collocated actuators and sensors,' Automatica, vol. 36, no. 3, pp. 337-348, 2000 https://doi.org/10.1016/S0005-1098(99)00169-7
  28. K. Oshima, T. Takigami, and Y. Hayakawa, 'Robust vibration control of a cantilever beam using self-sensing actuator,' JSME International Journal Series C, vol. 40, no. 4, pp. 681-687, 1997 https://doi.org/10.1299/jsmec.40.681
  29. F. Pellicano and F. Zirilli, 'Boundary layers and non-linear vibrations in an axially moving beam,' International Journal of Non-Linear Mechanics, vol. 33, no. 4, pp. 691-694, 1998 https://doi.org/10.1016/S0020-7462(97)00044-9
  30. Z. Qu, 'An iterative learning algorithm for boundary control of a stretched moving string,' Automatica, vol. 38, no. 5, pp. 821-827, 2002 https://doi.org/10.1016/S0005-1098(01)00266-7
  31. S. M. Shahruz, 'Boundary control of the axially moving kirchhoff string,' Automatica, vol. 34, no. 10, pp. 1273-1277, 1998 https://doi.org/10.1016/S0005-1098(98)00074-0
  32. S. M. Shahruz, 'Boundary control of a nonlinear axially moving string,' International Journal of Robust Nonlinear Control, vol. 10, pp. 17-25, 2000 https://doi.org/10.1002/(SICI)1099-1239(200001)10:1<17::AID-RNC458>3.0.CO;2-9
  33. V. L. Streeter, E. B. Wylie, and K. W. Bedford, Fluid Mechanics, McGraw-Hill, 9th edition, 1998
  34. J. A. Wickert and C. D. Mote, 'On the energetics of axially moving continua,' Journal of Acoustic Society of America, vol. 85, no. 3, pp. 1365-1368, 1988 https://doi.org/10.1121/1.397418
  35. J. A. Wickert and C. D. Mote, 'Classical vibration analysis of axially moving continua,' Journal of Applied Mechanics, vol. 57, pp. 738- 744, 1990 https://doi.org/10.1115/1.2897085
  36. J. A. Wickert, 'Non-Linear vibration of a travelling tensioned beam,' International Journal of Non-Linear Mechanics, vol. 27, no. 3, pp. 503-517, 1992 https://doi.org/10.1016/0020-7462(92)90016-Z
  37. K. J. Yang, K. S. Hong, and F. Matsuno, 'Robust adaptive control of a cantilevered flexible structure with spatiotemporally varying coefficients and bounded disturbance,' JSME International Journal, Series C, vol. 47, no. 3, pp. 812-822, 2004 https://doi.org/10.1299/jsmec.47.812