Cytoprotective Effect of Green Tea Extract and Quercetin against Hydrogen Peroxide-Induced Oxidative Stress

  • Jeong Yun-Mi (Department of Dermatology, Seoul National University College of Medicine) ;
  • Choi Yeong-Gon (Department of Dermatology, Seoul National University College of Medicine) ;
  • Kim Dong-Seok (Department of Dermatology, Seoul National University College of Medicine) ;
  • Park Seo-Hyoung (Department of Dermatology, Seoul National University College of Medicine) ;
  • Yoon Jin-A (Department of Dermatology, Seoul National University College of Medicine) ;
  • Kwon Sun-Bang (Welskin Co. Ltd.) ;
  • Park Eun-Sang (Department of Dermatology, Seoul National University College of Medicine) ;
  • Park Kyoung-Chan (Department of Dermatology, Seoul National University College of Medicine)
  • 발행 : 2005.11.01

초록

In this study, we evaluated the cytoprotective effects of antioxidative substances in hydrogen peroxide ($H_{2}O_{2}$) treated Mel-Ab melanocytes. Tested substances include selenium, quercetin, green tea (GT) extract, and several vitamins (ascorbic acid, Trolox, and folic acid). Of these, both quercetin and GT extract were found to have strong cytoprotective effects on $H_{2}O_{2}$­induced cell death. We also examined additive effects, but no combination of two of any of the above substances was found to act synergistically against oxidative damage in Mel-Ab cells. Nevertheless, a multi-combination of GT extract, quercetin, and folic acid appeared to prevent cellular damage in a synergistic manner, which suggests that combinations of antioxidants may be of importance, and that co-treatment with antioxidants offers a possible means of treating vitiligo, which is known to be related to melanocyte oxidative stress.

키워드

참고문헌

  1. Beazley, W. D., Gaze, D., Panske, A., Panzig, E., and Schallreuter, K. U., Serum selenium levels and blood glutathione peroxidase activities in vitiligo. Br. J. Dermatol., 141, 301-303 (1999) https://doi.org/10.1046/j.1365-2133.1999.02980.x
  2. Boissy, R. E. and Manga, P., On the etiology of contact/ occupational vitiligo. Pigment Cell Res., 17, 208-214 (2004) https://doi.org/10.1111/j.1600-0749.2004.00130.x
  3. Bowers, R. R., Nguyen, B., Buckner, S., Gonzalez, Y., and Ruiz, F., Role of antioxidants in the survival of normal and vitiliginous avian melanocytes. Cell Mol. Biol. (Noisy-legrand), 45, 1065-1074 (1999)
  4. Brusselmans, K., Vrolix, R., Verhoeven, G., and Swinnen, J. V., Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit Fatty Acid synthase activity. J. Biol. Chem., 280, 5636-5645 (2005) https://doi.org/10.1074/jbc.M408177200
  5. Chatterjee, S., Premachandran, S., Bagewadikar, R. S., and Poduval, T. B., The use of ELISA to monitor amplified hemolysis by the combined action of osmotic stress and radiation: potential applications. Radiat. Res., 163, 351-355 (2005) https://doi.org/10.1667/RR3313
  6. Dooley, T. P., Gadwood, R. C., Kilgore, K., and Thomasco, L. M., Development of an in vitro primary screen for skin depigmentation and antimelanoma agents. Skin Pharmacol., 7, 188-200 (1994) https://doi.org/10.1159/000211294
  7. Gauthier, Y., Cario Andre, M., and Taieb, A., A critical appraisal of vitiligo etiologic theories. Is melanocyte loss a melanocytorrhagy? Pigment Cell Res., 16, 322-332 (2003) https://doi.org/10.1034/j.1600-0749.2003.00070.x
  8. Giovannelli, L., Bellandi, S., Pitozzi, V., Fabbri, P., Dolara, P., and Moretti, S., Increased oxidative DNA damage in mononuclear leukocytes in vitiligo. Mutat. Res., 556, 101-106 (2004) https://doi.org/10.1016/j.mrfmmm.2004.07.005
  9. Jimbow, K., Chen, H., Park, J. S., and Thomas, P. D., Increased sensitivity of melanocytes to oxidative stress and abnormal expression of tyrosinase-related protein in vitiligo. Br. J. Dermatol., 144, 55-65 (2001) https://doi.org/10.1046/j.1365-2133.2001.03952.x
  10. Katiyar, S. K., Afaq, F., Perez, A., and Mukhtar, H., Green tea polyphenol (-)-epigallocatechin-3-gallate treatment of human skin inhibits ultraviolet radiation-induced oxidative stress. Carcinogenesis, 22, 287-294 (2001) https://doi.org/10.1093/carcin/22.2.287
  11. Katiyar, S. K. and Mukhtar, H., Tea antioxidants in cancer chemoprevention. J. Cell Biochem. Suppl., 27, 59-67 (1997)
  12. Kessler, M., Ubeaud, G., and Jung, L., Anti- and pro-oxidant activity of rutin and quercetin derivatives. J. Pharm. Pharmacol., 55, 131-142 (2003) https://doi.org/10.1211/002235702559
  13. Mi, Y. and Zhang, C., Protective Effect of Quercetin on Aroclor 1254-Induced Oxidative Damage in Cultured Chicken Spermatogonial Cells. Toxicol Sci., In press (2005)
  14. Montes, L. F., Diaz, M. L., Lajous, J., and Garcia, N. J., Folic acid and vitamin B12 in vitiligo: a nutritional approach. Cutis, 50, 39-42 (1992)
  15. Naziroglu, M., Karaoglu, A., and Aksoy, A. O., Selenium and high dose vitamin E administration protects cisplatin-induced oxidative damage to renal, liver and lens tissues in rats. Toxicology, 195, 221-230 (2004) https://doi.org/10.1016/j.tox.2003.10.012
  16. Nordberg, J. and Arner, E. S., Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med., 31, 1287-1312 (2001) https://doi.org/10.1016/S0891-5849(01)00724-9
  17. Onuki, J., Almeida, E. A., Medeiros, M. H., and Mascio, P. D., Inhibition of 5-aminolevulinic acid-induced DNA damage by melatonin, N-acetyl-N-formyl-5-methoxykynuramine, quercetin or resveratrol. J. Pineal Res., 38, 107-115 (2005) https://doi.org/10.1111/j.1600-079X.2004.00180.x
  18. Park, C. H., Chang, J. Y., Hahm, E. R., Park, S., Kim, H. K., and Yang, C. H., Quercetin, a potent inhibitor against betacatenin/ Tcf signaling in SW480 colon cancer cells. Biochem. Biophys. Res. Commun., 328, 227-234 (2005) https://doi.org/10.1016/j.bbrc.2004.12.151
  19. Placzek, M., Gaube, S., Kerkmann, U., Gilbertz, K. P., Herzinger, T., Haen, E., and Przybilla, B., Ultraviolet BInduced DNA Damage in Human Epidermis Is Modified by the Antioxidants Ascorbic Acid and d-alpha-Tocopherol. J. Invest. Dermatol., 124, 304-307 (2005) https://doi.org/10.1111/j.0022-202X.2004.23560.x
  20. Quevedo, W. C., Jr., Holstein, T. J., Dyckman, J., and McDonald, C. J., The responses of the human epidermal melanocyte system to chronic erythemal doses of UVR in skin protected by topical applications of a combination of vitamins C and E. Pigment Cell Res., 13, 190-192 (2000) https://doi.org/10.1034/j.1600-0749.2000.130312.x
  21. Quintanilla, R. A., Munoz, F. J., Metcalfe, M. J., Hitschfeld, M., Godoy, J. A., and Inestrosa, N. C., Trolox and 17beta -estradiol protects from the amyloid-beta -peptide neurotoxiticy by a mechanism that involves modulation of the Wnt signaling pathway. J. Biol. Chem., In press (2005)
  22. Saffari, Y. and Sadrzadeh, S. M., Green tea metabolite EGCG protects membranes against oxidative damage in vitro. Life Sci., 74, 1513-1518 (2004) https://doi.org/10.1016/j.lfs.2003.08.019
  23. Schallreuter, K. U., Moore, J., Wood, J. M., Beazley, W. D., Gaze, D. C., Tobin, D. J., Marshall, H. S., Panske, A., Panzig, E., and Hibberts, N. A., In vivo and in vitro evidence for hydrogen peroxide (H2O2) accumulation in the epidermis of patients with vitiligo and its successful removal by a UVBactivated pseudocatalase. J. Investig. Dermatol. Symp. Proc., 4, 91-96 (1999) https://doi.org/10.1038/sj.jidsp.5640189
  24. Sies, H., Oxidative stress: oxidants and antioxidants. Exp. Physiol., 82, 291-295 (1997) https://doi.org/10.1113/expphysiol.1997.sp004024
  25. Smit, N., Vicanova, J., Cramers, P., Vrolijk, H., and Pavel, S., The combined effects of extracts containing carotenoids and vitamins E and C on growth and pigmentation of cultured human melanocytes. Skin Pharmacol. Physiol., 17, 238-245 (2004) https://doi.org/10.1159/000080217
  26. Valko, M., Izakovic, M., Mazur, M., Rhodes, C. J., and Telser, J., Role of oxygen radicals in DNA damage and cancer incidence. Mol. Cell Biochem., 266, 37-56 (2004) https://doi.org/10.1023/B:MCBI.0000049134.69131.89
  27. Yoon, W. J., Won, S. J., Ryu, B. R., and Gwag, B. J., Blockade of ionotropic glutamate receptors produces neuronal apoptosis through the Bax-cytochrome C-caspase pathway: the causative role of $Ca^{2+}$ deficiency. J. Neurochem., 85, 525-533 (2003) https://doi.org/10.1046/j.1471-4159.2003.01724.x