계산 복잡성이 단순화된 비선형 추정기를 사용한 Bussgang 블라인드 등화

Bussgang Blind Equalization Using Nonlinear Estimators with Reduced Computational Complexity

  • 오길남 (광주대학교 정보통신학과)
  • Oh, Kil-Nam (Dept. of Information and Communications, Gwangju University)
  • 발행 : 2005.11.01

초록

이 논문에서는 계산 복잡성이 단순화된 비선형 추정기를 소개하고, 이를 적용한 Bussgang 블라인드 등화 알고리즘을 제안한다. 제안한 알고리즘은 베이즈 추정기가 눈 모형이 닫힌 등화 초기에는 시그모이드 추정기로 잘 근사화되며, 눈 모형이 열린 조건에서는 임계 추정기에 근사화되는 사실을 이용하였다. 제안 방법에서는 매 갱신 마다 채널 왜곡의 정도에 따라 시그모이드 추정기와 임계 추정기를 선택적으로 적용하고, 특히 시그모이드 추정기에 축소 신호점을 도입함으로써 고차 QAM 신호의 블라인드 등화에 적용 시 계산 복잡성을 극히 단순화하는 동시에 블라인드 수렴 특성과 정상상태 성능을 개선할 수 있음을 보인다.

This paper introduces nonlinear estimators with reduced complexity, and proposes the Bussgang blind equalization algorithm employing the nonlinear estimators. The proposed algorithm utilized the facts that the Bayesian estimator is well approximated to the sigmoid estimator in initial stage of equalization with closed eye and is well approximated to the threshold estimator under open eye condition. The proposed method adopts selectively one of the two nonlinear estimators, i.e., the sigmoid estimator and the threshold estimator, according to channel distortion level at each iteration. As a result, by using the sigmoid estimator with reduced constellation, the proposed scheme, as it is applied to blind equalization of high-order QAM signals, simplifies the computational complexity extremely, and enhances the blind convergence capability and steady-state performance.

키워드

참고문헌

  1. Simone Fiori, Blind deconvolution by simple adaptive activation function neuron,Neurocomputing, vol. 48, pp. 763-778, 2002 https://doi.org/10.1016/S0925-2312(01)00672-5
  2. S. Haykin, Adaptive Filter Theory, 4th ed., Prentice-Hall, 2002
  3. J. Karaoguz, 'A generalized decision-directed blind equalization algorithm applied to equalization of multipath Rayleigh fading mobile communication channels,' Ph.D. Dissertation, North Carolina State Univ., 1992
  4. S. Chen, S. McLaughlin, P. M. Grant and B. Mulgrew, 'Multi-stage blind clustering equalizer,' IEEE Trans. Commun., vol. 43, no. 3, pp.701-705, 1995 https://doi.org/10.1109/26.380093
  5. Y. Sato, 'A method of self-recovering equalization for multilevel amplitude -modulation systems,' IEEE Trans. Commun., vol. COM-23, no., pp. 679-682, 6, June 1975 https://doi.org/10.1109/TCOM.1975.1092854
  6. D. Godard, 'Self-recovering equalization and carrier tracking in two-dimensional data communication systems,' IEEE Trans. Communications, vol. COM-28, no. 11, pp. 1867-1875, 1980 https://doi.org/10.1109/TCOM.1980.1094608
  7. J. R. Treichler and B. G. Agee, 'A new approach to multipath correction of constant modulus signals,' IEEE Trans. Acoustics, Speech and Signal Processing, vol. ASSP-31, no. 2, pp. 459-472, 1983 https://doi.org/10.1109/TASSP.1983.1164062
  8. A. Benveniste and M. Goursat, 'Blind equalizers,' IEEE Trans. Commun., vol. COM-32, no. 8, pp. 871-883, Aug. 1984
  9. S. Bellini, 'Bussgang techniques for blind equalization,' IEEE Proc. Globecom, pp. 1634-1640, 1986
  10. O. Macchi and E. Eweda, 'Convergence analysis of self-adaptive equalizers,' IEEE Trans. Inform. Theory, vol. IT-30, no. 2, pp, 161-176, Mar 1984 https://doi.org/10.1109/TIT.1984.1056896
  11. O. Shalvi and E. Weinstein, 'New criteria for blind deconvolution of nonminimum phase systems (channels),' IEEE Trans. Inform. Theory, vol. IT-36, no. 2, pp. 312-321, Mar. 1990 https://doi.org/10.1109/18.52478
  12. S. C. Bateman and S. Y. Ameen, 'Comparison of algorithms for use in adaptive adjustment of digital data receivers, IEE Proc., Pt. I, vol. 137, no. 2, pp. 85-96, 1990 https://doi.org/10.1049/ip-i-2.1990.0012
  13. G. Picchi and G. Prati, 'Blind equalization and carrier recovery using a 'Stop-and-Go' decision-directed algorithm,' IEEE Trans. Commun., vol. COM-35, no. 9, pp. 877-887, Sep. 1987 https://doi.org/10.1109/TCOM.1987.1096877