References
- J. Barria and P. R. Halmos, Vector bases for two commuting matrices, Linear Multilinear Algebra 27 (1990), 147-157 https://doi.org/10.1080/03081089008818006
- J. A. Buchmann, R. Scheidler, and H. C. Williams, A key-exchange protocol using real quadratic fields, J. Cryptology 7 (1994), 171-199 https://doi.org/10.1007/BF02318548
- M. A. Cherepnev, Schemes of public distribution of keys based on a non- commutative group, Discrete Math. Appl. 13 (2003), no. 3, 265-269 https://doi.org/10.1515/156939203322385865
- M. A. Cherepnev, V. M. Sidelnikov, and V. V. Yashchenko, Systems of open distribution of keys on the basis of noncommutative semigroups, Russian Acad. Sci. Dokl. Math. 48 (1994), no. 2, 384-386
- W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Trans. Inform Theory 22 (1976), 644-654 https://doi.org/10.1109/TIT.1976.1055638
-
J.-C. Faugere, A new efficient algorithm for computing grobner bases (
$F_4$ ), J. Pure Appl. Algebra 139 (1999), 61-88 https://doi.org/10.1016/S0022-4049(99)00005-5 -
J.-C. Faugere, A new efficient algorithm for computing grobner bases without reduction to zero (
$F_5$ ), In Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation - F. Gantmacher, The Theory of Matrices Vol. 1, A.M.S. Chelsea publishing, 1977
- J. A. Green, The character of finite general linear groups, Trans. Amer. Math. Soc. 80 (1955), 402-447 https://doi.org/10.2307/1992997
- J. H. Hodges, A bilinear matrix equations over a finite field, Duke Math. J. 31 (1964), 661-666 https://doi.org/10.1215/S0012-7094-64-03164-3
- J. H. Hodges, Representation by bilinear forms in a finite field, Duke Math. J. 22 (1955), 497-510 https://doi.org/10.1215/S0012-7094-55-02256-0
- N. Jacobson, Schur's theormes on commutative matrices, Bull. Amer. Math. Soc. 50 (1944), 431-436 https://doi.org/10.1090/S0002-9904-1944-08169-X
- T. Laffey and S. Lazarus, Two-generated commutative matrix subalgebras, Linear Algebra Appl. 147 (1991), 249-273 https://doi.org/10.1016/0024-3795(91)90236-P
- S. M. Mollevi, C. Pardo, I. Gracia, and P. Morillo, Linear key predistribution schemes, Des. Codes Cryptogr. 25 (2002), 281-298 https://doi.org/10.1023/A:1014939630572
-
M. Neubauer and D. Saltman, Two-generated commutative subalgebras of
$M_n$ (f), J. Algebra 164 (1994), 545-562 https://doi.org/10.1006/jabr.1994.1077 - M. Qu, J. Solinas, L. Law, A. Menezes, and S. Vanstone, An efficient protocol for authenticated key agreement, Des. Codes Cryptogr. 28 (2003), no. 2, 119-134 https://doi.org/10.1023/A:1022595222606
-
N. Strauss, Algorithm and implementation for computation of Jordan form over A
$[x_1,...,x_m]$ , In Computers and mathematics, Springer, 1989, 21-26. - P. C. van Oorschot, A. J. Menezes, and S. A. Vanstone, Handbook of Applied Cryptography, CRC Press, 1997
- V. Varadharajan, R. W. K. Odoni, and P. W. Sanders, Public key distribution in matrix rings, Electronic Letters, 20 (1974), no. 9, 386-387
- HongzengWei and Xingfen Zheng, The number of solutions to the bilinear matrix equation over a finite field, J. Statist. Plann. Inference 94 (2001), 359-369 https://doi.org/10.1016/S0378-3758(00)00266-4
- Wan Zhe-xian and Li Gen-dao, The two theorems of Schur on commutative matrices, Chinese Math. 5 (1964), 156-164