References
- P. Billingsley, Probability and Measure, John Wiley & Sons, New York, 1986
- K. Falconer, Technique in Fractal Heometry, John Wiley & Sons, New York, 1997
- S. Ikeda, On a fractal set with a gap between its Hausdorff dimension and box dimension, Hiroshima Math. J. 25 (1995),433-439
- T. S. Kim and S. Kim, Singular spectra of fractional Brownian motions as a multi-fractal, Chaos Solitions Fractals 19 (2004), 613-619 https://doi.org/10.1016/S0960-0779(03)00187-5
- K. M. Kolwankar and A. D. Gangal, Fractional differentiability of nowhere differentiable functions and dimensions, Chaos 6 (1996), 505-513 https://doi.org/10.1063/1.166197
- P. Kraniauskas, G. Cariolaro, and T. Erseghe, Method for Defining a Class of Fractional Operations, IEEE Trans. Signal Process. 46 (1998), 2804-2807 https://doi.org/10.1109/78.720382
- F. Mainardi, The Fundamental Solutions for the Fractional Diffusion-Wave Equation, Appl. Math. Lett. 9 (1996), 23-28 https://doi.org/10.1016/0893-9659(96)00089-4
- K. B. Oldham and J. Spanier, The fractional calculus, Academic Press, New York, 1974
- M. D. Ortigueira, Introduction to fractional signal process, IEE Proc. Vis., Image Signal Process. 147 (2000), 62-70 https://doi.org/10.1049/ip-vis:20000272
- C. A. Rogers, Hausdorff Measures, the Cambridge Univ. Press, London, 1970
Cited by
- Some Further Generalizations of Hölder's Inequality and Related Results on Fractal Space vol.2014, 2014, https://doi.org/10.1155/2014/832802
- Mathematical aspects of the Heisenberg uncertainty principle within local fractional Fourier analysis vol.2013, pp.1, 2013, https://doi.org/10.1186/1687-2770-2013-131