DOI QR코드

DOI QR Code

SKEW ENVELOPING ALGEBRAS AND POISSON ENVELOPING ALGEBRAS

  • CHO, EUN-HEE (Department of Mathematics Chungnam National University) ;
  • OH, SEI-QWON (Department of Mathematics Chungnam National University)
  • Published : 2005.10.01

Abstract

The universal mapping property and the Gelfand- Kirillov dimension of a skew enveloping algebra are studied and it is proved that every Poisson enveloping algebra is a homomorphic image of a skew enveloping algebra.

Keywords

References

  1. V. Chari and A. Pressley, A guide to quantum groups, Cambridge University Press, Providence, 1994
  2. C. Kassel, Quantum groups, Grad. Texts in Math., 155, Springer-Verlag, 1995
  3. L. I. Korogodski and Y. S. Soibelman, Algebras of functions on quantum groups, Math. Surveys Monogr., 56, American Mathematical Society, Providence, 1998
  4. L. A. Lambe and D. E. Radford, Introduction to the quantum Yang-Baxter equation and quantum groups: An algebraic approach mathematics and its applications, Kluwer Academic Publishers, Dordrecht/Boston/London, 423 (1997)
  5. J. C. McConnell and J. C. Robson, Noncommutative noetherian rings, Pure Appl. Math., A Wiley-interscience series of texts, monographs & tracts, Wiley Interscience, New York, 1987
  6. S.-Q. Oh, Poisson enveloping algebras, Comm. Algebra 27 (1999), 2181-2186 https://doi.org/10.1080/00927879908826556
  7. S.-Q. Oh, C.-G. Park, and Y.-Y. Shin, A Poincare-Birkhoff- Witt theorem jor Poisson enveloping algebras, Comm. Algebra 30 (2002), 4867-4887 https://doi.org/10.1081/AGB-120014673
  8. M. E. Sweedler, Hopf algebras, W. A. Benjamin, Inc., New York, 1969

Cited by

  1. The inversion height of the free field is infinite vol.21, pp.3, 2015, https://doi.org/10.1007/s00029-014-0168-4