DOI QR코드

DOI QR Code

Antioxidative and Antihypertensive Effects of Lycii fructus Extracts

구기자(Lycii fructus) 추출물의 항산화와 항고혈압 효과

  • Cho, Young-Je (Dept. of Food Engineering, Sangju Notional University) ;
  • Chun, Sung-Sook (Dept. of Food Science ar Technology, Yeungnam University) ;
  • Cha, Weon-Seup (Dept. of Food Engineering, Sangju Notional University) ;
  • Park, Joon-Hee (Dept. of Food Engineering, Sangju Notional University) ;
  • Lee, Kyoung-Hwan (Dept. of Food Engineering, Sangju Notional University) ;
  • Kim, Jeung-Hoan (Dept. of Food Engineering, Sangju Notional University) ;
  • Kwon, Hyo-Jung (Dept. of Food Engineering, Sangju Notional University) ;
  • Yoon, So-Jung (Dept. of Food Engineering, Sangju Notional University)
  • 조영제 (상주대학교 식품공학과) ;
  • 천성숙 (영남대학교 식품가공학과) ;
  • 차원섭 (상주대학교 식품공학과) ;
  • 박준희 (상주대학교 식품공학과) ;
  • 이경환 (상주대학교 식품공학과) ;
  • 김정환 (상주대학교 식품공학과) ;
  • 권효정 (상주대학교 식품공학과) ;
  • 윤소정 (상주대학교 식품공학과)
  • Published : 2005.11.01

Abstract

The physiological activity of Lycii fructus extracts were examined. Total phenolic contents in the ethanol extracts (9.5 mg/g) of Lycii fructus were higher than that of water extracts (8.7 mg/g). The chlorogenic acid ($1.7{\mu}g$ in water extracts and $1.3{\mu}g$ in $60\%$ ethanol extract) was the most abundant phenolic compound as analyzed by HPLC. The ABTS [2,2'-azinobis (3-othylbenfothiaznoline-6- sulfornic acid)] radical decolor-ization electron donating ability (DPPH) and antioxidant protection factor (PF) were determined for extracts from Lycii fructus. Water extract ($76.7\%$ on ABTS, $92.6\%$ on DPPH and 1.1 on PF) showed higher inhibition rate than $60\%$ ethanol extracts ($52.8\%,\;88.8\%$ and 1.0). Thiobarbituric acid reactive substance (TBARS) was determined as $1.5{\times}10^{-3}\;{\mu}M$ in $60\%$ ethanol extract. Ethanol extracts was more effective in decreasing TBARS than water extracts. The water extracts from Lycii fructus had higher angiotensin converting enzyme (ACE) inhibition activity than ethanol extracts. The result will be useful for functional foods application and under-standing the physiological activities of Lycii fructus.

구기자를 에탄올과 물로 추출하여 항산화와 항고혈압효과를 탐색하였다. 구기자 추출물의 폴리 페놀함량은 물 추출물과 에탄을 추출물에서 9.5 mg/g과 8.7 mg/g으로 나타났으며, HPLC에 의한 Polyphenol 화합물을 분리한 결과 물 추출물과 $60\%$ 에탄올에서 1.7 mg/g과 1.3 mg/g으로 chlorogenic acid가 가장 많이 검출되었다. 항산화효과 실험 중 DPPH는 물 추출물에서 $92.6\%$, 에탄을 추출물에서 $88.8\%$으로 높은 전자공여능을 나타냈으며, ABTS 측정에서는 물 추출물이 에탄을 추출물의 $52.8\%$보다 높은 $76.7\%$로 나타났다. PF는 물 추출물과 에탄을 추출물에서 각각 1.1과 1.0으로 나타났으며, TBARS값은 에탄을 추출물이 $1.5{\times}10^{-3}\;{\mu}M$ 로 대조구 $1.5{\times}10^{-3}\;{\mu}M$보다 낮은 TBARS 값을 나타내어 산화촉진인자를 binding하는 능력이 물 추출물보다 높게 나타났다. ACE 저해 활성은 물 추출물에서 $75.1\%$가, 에탄올을 추출물에서 $71.8\%$의 저해활성을 나타냈다. 이상의 결과로 구기자추출물이 기능성 식품소재로 활용이 가능할 것으로 사료된다.

Keywords

References

  1. Lee BC, Park JS, Kwak TS, Moon CS. 1998. Variation of chemical properties in collected boxthom varieties. Korean J Breed 30: 267-272
  2. Science, the encyclopedia publishing company it compiles. 1999. Ingredient and use of medical plant. From January angle, Seoul
  3. Park YJ, Kim MH, Bae SJ. 2002. Enhancement of anticarcinogenic effect by combination of Lycii fructus with vitamin C. J Korean Soc Food Sci Nutr 31: 143-148 https://doi.org/10.3746/jkfn.2002.31.1.143
  4. Park JS, Park JD, Lee BC, Choi KJ. 2000. Effects of extracts from various parts of Lycium chinense Mill. on proliferation of mouse spleen cells. Korean J Medicinal Crop Sci 8: 291-296
  5. Do JR, Kim SB, Park YH, Kim DS. 1993 Angiotensin-I converting enzyme inhibitiory activity by the component of traditional tae material. Korean J Food Sci Technol 25: 456-460
  6. Shin JS, Kim KS, Jeong GH, Cheong CS. 1997. Antidiabetic activity of Lycii fructus. Kor J Pharmacogn 28: 138-142
  7. Kim KS, Shim SH, Jeong GH, Cheong CS. 1998. Antidiabetic activity of constituents of Lycii fructus. J Applied Pharmacology 6: 378-382
  8. Kim HK, Kim YE, Do JR, Lee YC, Lee BY. 1995. Antioxidative activity and physiological activity of some Korean medicinal plants. Korean J Food Sci Technol 27: 80-85
  9. Kim HS, Park YS, Kim CI. 1998. Changes of serum lipid profiles after eating Lycii fructus in rats fed high fat diet. Korean J Nutr 31: 263-270
  10. Lee MY, Sheo HJ. 1986. Quantitive analysis of total amino acids and free sugars in Lycii fructus. J Korean Soc Food Nutr 15: 249-252
  11. Miquel J, Quintaniha AT, Weber H. 1090. Handbook of free radical and antioxidants in biomedicine. CRC Press, Boca Raton, USA. Vol I, p 223
  12. Aruoma OI. 1998. Free radical, oxidative stress and antioxidants in human health and diwease. J Am Oil Chem Soc 75: 199-212 https://doi.org/10.1007/s11746-998-0032-9
  13. Brieskorm CH, Fuch A, Bredenberg JB, McChensney JD, Wenkert E. 1964. The structure of carnosol. J Org Chem 29: 2293-2297 https://doi.org/10.1021/jo01031a044
  14. Kim HK, Kim YE, Do JR, Lee YC, Lee BY. 1995. Antioxidantive activity and physiological activity of some Korean medicinal plants. Korean J Food Sci Technol 27: 80-85
  15. Soffer RL. 1976 Angiotensin-converting enzyme and the regulation of vasoactive peptides. Ann Rev Biochem 45: 73-77 https://doi.org/10.1146/annurev.bi.45.070176.000445
  16. Ondetti MA, Cushman DW. 1982 Enzymes of the renin-angiotensin system and their inhibitiors. Ann Rev Biochem 51: 283-291 https://doi.org/10.1146/annurev.bi.51.070182.001435
  17. Douglas WW. 1980. The Plasmacological basis of thera peutics. 6th ed. Gilman AG, Goodman LS, Gilman A, eds. McMillian Publishing Co, Inc., New York, USA. Chapter 27
  18. Hollenberg NK. 1979. Pharmacologic interruption of the renin-angiotensin system. Ann Rev Pharmacol Toxicol 19: 559-565 https://doi.org/10.1146/annurev.pa.19.040179.003015
  19. Cushman DW, Ondetti MA. 1980. Inhibition of angiotensin-converting enzyme for treatment of hypertensin. Biochem Pharmacol 29: 1871 -1876 https://doi.org/10.1016/0006-2952(80)90096-9
  20. Stewart JM, Ferreira SH, Greene LJ, 1971. Bradykinin potentiating peptide PCA-Lys-Trp-Ala-Pro. An inhibitior of the pulmonary inactivation of bradykinin and conversion of angiotensin I to II. Biochem Pharmacol 20: 1557-1567 https://doi.org/10.1016/0006-2952(71)90284-X
  21. Gavras H, Brunner HR, Laragh JH, Sealey JE, Gravras I, Vukovich RA. 1974. An angiotensin converting-enzyme inhibitor to identify and treat vasoconstrictor and volume factors in hypertensive patients. N Engl J Med 291: 817-821 https://doi.org/10.1056/NEJM197410172911603
  22. Case DB, Wallace JM, Keim HJ, Weber MA, Drayer JI, White RP, Sealey JE, Laragh JH. 1976. Estimating renin participation in hypertension: superiority of converting enzyme inhibitior over saralasin. Am J Med 61: 790-796 https://doi.org/10.1016/0002-9343(76)90160-1
  23. Pertrillo EW, Ondetti MA. 1982 Angiotensin converting enzyme inhibitors: Medicinal chemistry and biological actions. Med Chem Biol Act Med Res 2: 1-5
  24. Wyvratt MJ, Patchett AA. 1985. Recent developments in the design of angiotensin-converting enzyme inhibitors. Med Res Rev 5: 483-488 https://doi.org/10.1002/med.2610050405
  25. Dural B, Shetty K. 2001. The stimulation of phenolics and antioxidant activity in pea (Pisum sativum) elicited by genetically transformed anise root extract. J Food Biochem 25: 361-377 https://doi.org/10.1111/j.1745-4514.2001.tb00746.x
  26. Blois MS. 1958. Antioxidant determination by the use of stable free radical. Nature 26: 1198-1199
  27. Pellegrin N, Roberta R, Min Y, Catherine RE. 1998. Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activites applying 2,2' -azinobis(3-ehylenebenzothiazoline-6-sulfonic acid) radical cation decolorization assay. Method Enzymol 299: 379-389
  28. Andarwulan N, Shetty K. 1999. Phenolic content in differentiated tissue cultures of untransformed and Agrobacterium-transformed roots of anise (Pimpinella anisum L.) J Agric Food Chem 47: 1776-1780 https://doi.org/10.1021/jf981214r
  29. Buege JA, Aust SD. 1978. Microsomal lipid peroxidation. Method Enzymol 105: 302-310
  30. Cushman DW, Ondetti MA. 1980. Inhibitors of angiotensin converting enzyme for treatment of hypertension. Biochem Pharmacol 29: 1871-1877 https://doi.org/10.1016/0006-2952(80)90096-9
  31. Cuvelier ME, Richahard H, Berset C. 1998. Antioxidative activity of phenolic composition of pilot plant and comercial extracts of sage and rosemary. J Am Oil Chem Soc 73: 645-652 https://doi.org/10.1007/BF02518121
  32. Cha JY, Cho YS. 1999. Effect of potato polyphenolics on lipid peroxidation in rats. J Korean Soc Food Sci Nutr 28: 1131-1136
  33. Gebhardt R. 1998. Inhibition of cholesterol biosynthesis in primary cultured rat hepatocytes by artichoke (Cynara scolymus L.) extract. J Phamacol Exp Ther 286: 1122-1128
  34. Tsuchiya T, Suzuki O, Igarashi K. 1996. Protective effects of chlorogenic acid on paraquat-induced oxidative stress in rats. Biosci Biotechnol Biochem 60: 765-768 https://doi.org/10.1271/bbb.60.765
  35. Kono Y, Kashone S, Yoneyama T, Sakamoto Y, Matsu Y, Shibata H. 1998. Iron chelation by chlorogenic acid as a natural antioxidant. Biosci Biotechnol Biochem 62: 22-27 https://doi.org/10.1271/bbb.62.22
  36. Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D. 1993. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 342: 1007-1011 https://doi.org/10.1016/0140-6736(93)92876-U
  37. Kim HK, Kim YE, Do JR, Lee YC, Lee BY. 1995. Antioxidative activity and physiological activity of some Korean medical plants. Korean J Food Sci Technol 27: 80-85
  38. Fridovich I. 1986. Biological effects of the superoxide radical. Arch Biochem Biophys 247: 1-15 https://doi.org/10.1016/0003-9861(86)90526-6
  39. Noh H, Song KB. 2001. Isolation of an angiotensin converting enzyme inhibitor from Oenathe javanica. Agric Chem Biotechnol 44: 98-99
  40. Oh SJ, Kim SH, Kim SK, Baek YJ, Cho KH. 1997. Angiotensin I-converting enzyme inhibitory activity of the K-casein fragments hydrolyzated by chymosin, pepsin, and trysin. Fractionation of angiotensin converting enzyme (ACE) inhibitory peptides from soybean paste. Korean J Food Sci Technol 27: 230-234
  41. Funayama S, Hikono H. 1979. Hypotensive principles of Diospyros kaki leaves. Chem Pharm Bull 27: 2865-2869 https://doi.org/10.1248/cpb.27.2865

Cited by

  1. Antioxidative and Anti-Diabetes Activity, and Free Amino Acid and Mineral Contents of Beverage with Gugija (Lycii fructus) Extracts vol.31, pp.2, 2015, https://doi.org/10.9724/kfcs.2015.31.2.207
  2. Oriental Diet Therapy Area Approach and Nutritional Composition Analysis of Yack-Sun Tea for Qi-stagnation and Blood Stasis Pattern' Overweight and Obesity vol.25, pp.3, 2012, https://doi.org/10.9799/ksfan.2012.25.3.513
  3. Quality Characteristics and Antioxidative Effects of Dasik added with Lycii Fructus Extract vol.23, pp.6, 2014, https://doi.org/10.5934/kjhe.2014.23.6.1217
  4. Effect of Lycii Fructus Powder Additions on Chicken Breast Jerky Quality vol.26, pp.3, 2017, https://doi.org/10.5934/kjhe.2017.26.3.259
  5. Comparison of Physiological Activities of Radish Bud (Raphanus sativus L.) according to Extraction Solvent and Sprouting Period vol.44, pp.4, 2015, https://doi.org/10.3746/jkfn.2015.44.4.549
  6. Geometric and Mechanical Characteristics of the Boxthorn Berry vol.25, pp.3, 2014, https://doi.org/10.7856/kjcls.2014.25.3.383
  7. Anti-inflammatory and Anti-Pruritonic Effects of WSY-1075 composited with Medicinal Plants on the Activated Rat Peritoneal Mast cells and Mouse Pruritus vol.28, pp.4, 2013, https://doi.org/10.6116/kjh.2013.28.4.93
  8. Effects of Lycii fructus Water Extracts of Serum Enzymes Activities on Renin and Aldosterone Hormone in Aluminum Fed Rats vol.30, pp.4, 2015, https://doi.org/10.7318/KJFC/2015.30.4.468
  9. Antioxidant Effects and Storage Stability of Yanggaeng Supplemented with Lycii Fructus Extract vol.25, pp.3, 2016, https://doi.org/10.5934/kjhe.2016.25.3.375
  10. Occurrence patterns of insect pests in the field of Lycium chinense under environment-friendly management vol.41, pp.4, 2014, https://doi.org/10.7744/cnujas.2014.41.4.341
  11. Quality Characteristics and Descriptive Analysis of Yanggaeng added with Lycii Fructus Extract vol.24, pp.5, 2015, https://doi.org/10.5934/kjhe.2015.24.5.725
  12. Antioxidative Activity of Beverage with Water and Ethanol Extracts of Maegmundong (Liriope platyphylla) vol.30, pp.6, 2014, https://doi.org/10.9724/kfcs.2014.30.6.785
  13. 가감공진단(加減拱辰丹) (WSY-1075)의 접촉성 피부염 유발 모델동물에 대한 개선효과 vol.21, pp.1, 2005, https://doi.org/10.14374/hfs.2013.21.1.131
  14. 건조 구기자의 추출에 따른 항산화 효능 모니터링 vol.23, pp.6, 2016, https://doi.org/10.11002/kjfp.2016.23.6.859
  15. Antioxidative and Antidiabetic Effects of Roasted Gugija (Lycii fructus) Extracts vol.33, pp.4, 2005, https://doi.org/10.9724/kfcs.2017.33.4.413
  16. 알코올 함량에 따른 구기자 막걸리의 소비자 기호도 및 묘사 특성 vol.30, pp.4, 2005, https://doi.org/10.9799/ksfan.2017.30.4.719
  17. 구기자 추출물의 최적 항산화 추출조건 모니터링 vol.34, pp.3, 2005, https://doi.org/10.12925/jkocs.2017.34.3.451
  18. 구기자 종자 초임계유체 추출물의 화장품소재로서의 가능성 평가 vol.34, pp.3, 2017, https://doi.org/10.12925/jkocs.2017.34.3.623
  19. 한방추출 천연혼합물의 탈모 유발 쥐에 대한 발모 효과 vol.33, pp.6, 2019, https://doi.org/10.15188/kjopp.2019.12.33.6.363
  20. A Tetraploid, Self-compatible Goji Berry (Lycium chinense Miller) Cultivar, ‘Whasu’, Adaptable to Rain Shelter Greenhouse vol.52, pp.2, 2005, https://doi.org/10.9787/kjbs.2020.52.2.165