DOI QR코드

DOI QR Code

Guiding Properties of Square-lattice Photonic Crystal Fibers

  • Im Jooeun (Department of Information and Communications, Gwangju Institute of Science and Technology) ;
  • Kim Jinchae (Department of Information and Communications, Gwangju Institute of Science and Technology) ;
  • Paek Un-Chul (Department of Information and Communications, Gwangju Institute of Science and Technology) ;
  • Lee Byeong Ha (Department of Information and Communications, Gwangju Institute of Science and Technology)
  • Received : 2005.12.01
  • Published : 2005.12.01

Abstract

In this paper we have investigated the guiding properties of photonic crystal fibers (PCFs) with a square-lattice of air-holes in the cladding. We have shown numerical results of PCFs with various air hole sizes and hole-to-hole spacings over a wide wavelength range. The group velocity dispersion, effective area and effective refractive index of PCF have been calculated numerically. The waveguide dispersion has greatly affected the group velocity dispersion when hole-to-hole spacing is about $1{\mu}m$. The effective area is quite flat over the wide spectral range whether the hole-to-hole spacing is large or ratio of diameter to pitch is large. From the field distribution, we found that the field is tightly confined within the core region of PCF when the pitch is $3{\mu}m$ and the air-filling fraction is 0.9.

Keywords

References

  1. J. C. Knight, 'Photonic crystal fiber: putting new life into an old hat,' Technical Digest of the LEOS Summer Topical Meetings, pp. 3-4, 2003
  2. J. C. Knight and P. St. J. Russell, 'New ways to guide light,' Science, vol. 296, pp. 276-277, 2002 https://doi.org/10.1126/science.1070033
  3. J. C. Knight, A. Benabid, W. Reeves, T. Birks, and P. Russell, 'Holey optical fibers: cages for light,' Optical Fiber Communications Conference, vol. 2, pp. 693-694, 2003 https://doi.org/10.1109/OFC.2003.1248504
  4. W. H. Reeves, J. C. Knight, and P. St. J. Russell, 'Demonstration of ultra-flattened dispersion in photonic crystal fibers,' Opt. Exp., vol. 10, no. 14, pp. 609-613, 2002 https://doi.org/10.1364/OE.10.000609
  5. M. Szpulak, J. Olszewski, T. Martynkien, W. Urbanczyk, and J. Wojcik, 'Polarizing photonic crystal fibers with wide operation range,' Opt. Comm., vol. 239, pp. 91-97, 2004 https://doi.org/10.1016/j.optcom.2004.05.020
  6. J. C. Knight, T. A. Cregan, P. St. J. Russell, and J. P. de Sandro, 'Large mode area photonic crystal fibre,' IEEE Electron. Lett., vol.34, no. 13, pp. 1347-1348, 1998 https://doi.org/10.1049/el:19980965
  7. A. Ferrando, M. Zacares, P. F. de Cordoba, D. Binosi, and A. Monsoriu, 'Spatial soliton formation in photonic crystal fibers,' Opt. Exp., vol. 11, no. 5, pp. 452-459, 2003 https://doi.org/10.1364/OE.11.000452
  8. A. H. Bouk, A. Cucinotta, F. Poli, and S. Selleri, 'Dispersion properties of square-lattice photonic crystal fibers,' Opt. Exp., vol. 12, no. 5, pp. 941-946, 2004 https://doi.org/10.1364/OPEX.12.000941
  9. F. Poli, M. Foroni, M. Bottacini, M. Fuochi, N. Burani, L. Rosa, A. Cucinotta, and S. Selleri, 'Single-mode regime of square-lattice Photonic crystal fibers,' J. Opt. Soc. Am. A, vol. 22, no. 8, pp. 1655-1661, 2005 https://doi.org/10.1364/JOSAA.22.001655
  10. M. Y. Chen, and R. Yu, 'Square-structured photonic bandgap fibers,' Opt. Comm., vol. 235, pp. 63-67, 2004 https://doi.org/10.1016/j.optcom.2004.02.051
  11. J. Kim, U. -C. Paek, D. Y. Kim, and Y. Chung, 'Analysis of the dispersion properties of holey optical fibers using normalized dispersion,' Optical Fiber Communication Conference, WDD86, 2001 https://doi.org/10.1109/OFC.2001.928538
  12. B. Zsigri, C. Peucheret, M. D. Nielsen, and P. Jeppesen, 'Transmission over 5.6 km large effective area and low-loss (1.7 dB/km) photonic crystal fibre,' IEEE Electron. Lett., vol. 39, no. 10, pp. 796-798, 2003 https://doi.org/10.1049/el:20030518
  13. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre and G. Renversez, C. Martijin de Sterke, L. C. Botten, 'Multipole method of microstructured optical fibers. I. Formulation,' J. Opt. Soc. Am. A, vol. 19, no. 10, pp. 2322-2330, 2002 https://doi.org/10.1364/JOSAB.19.002322
  14. B. T. Kuhlmey, R. C. McPhedran, C. M. de Sterke, P. A. Robinson, G. Renversez and D. Maystre, 'Microstructured optical fibers: where's the edge?,' Opt. Exp., vol. 10, no. 22. pp. 1285-1290, 2002 https://doi.org/10.1364/OE.10.001285
  15. N. A. Mortensen, 'Effective area of photonic crystal fibers,' Opt. Exp., vol. 10, no. 7, pp. 341-348, 2002 https://doi.org/10.1364/OE.10.000341
  16. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001)
  17. T. P. White, R. C. McPhedran, C.M. de Sterke, L. C. Botton, and M. J. Steel, 'Confinement losses in microstructured optical fibers,' Opt. Lett., vol. 26, no. 21, pp. 1660-1662, 2001 https://doi.org/10.1364/OL.26.001660

Cited by

  1. Near-elliptic Core Triangular-lattice and Square-lattice PCFs: A Comparison of Birefringence, Cut-off and GVD Characteristics Towards Fiber Device Application vol.18, pp.3, 2014, https://doi.org/10.3807/JOSK.2014.18.3.207