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Guiding Properties of Square-lattice Photonic Crystal Fibers
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In this paper we have investigated the guiding properties of photonic crystal fibers (PCFs) with
a square-lattice of air-holes in the cladding. We have shown numerical results of PCFs with various
air hole sizes and hole-to-hole spacings over a wide wavelength range. The group velocity dispersion,
effective area and effective refractive index of PCF have been calculated numerically. The waveguide
dispersion has greatly affected the group velocity dispersion when hole-to-hole spacing is about 1 pm.
The effective area is quite flat over the wide spectral range whether the hole-to-hole spacing is large
or ratio of diameter to pitch is large. From the field distribution, we found that the field is tightly
confined within the core region of PCF when the pitch is 3 pym and the air-filling fraction is 0.9.
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I. INTRODUCTION

Photonic crystal fibers (PCFs), also called holey
fibers or microstructured fibers, consist of an array of
air-holes running through the entire fiber length. The
PCFs consist of the core, which is formed by a solid
silica defect instead of a missing hole, and the holey
cladding region. The PCFs have many unique features
such as the special optical properties of effective index,
group velocity dispersion and band structure [1]. The
guiding mechanisms of the fiber are explained by index
guiding and photonic band-gap guiding: index guiding
is so called as total internal reflection of the conventional
step index optical fiber, whereas for photonic band-gap
guidance the light can be confined to a solid defect region
only and to propagates along a solid defect region because
the existence of a photonic bandgap in the periodic photo-
nic crystal cladding prohibits propagation though the
transversal plane [2]. Owing to the structural difference
of the cladding structure, the optical properties of PCFs
are tailored by simply changing the structural para-
meters of the fiber to enhance or to degrade the high
nonlinearity of the fiber, effective mode size, and group
velocity dispersion [3].

Until now, PCFs with triangular or honeycomb lattice
structures have been extensively studied to understand
the optical characteristics and the special features, such
as ultra-flattened dispersion over a wide wavelength range
[4], polarization [5], very large or extremely small mode
field size [6], and nonlinear properties [7], have been

reported. Recently, a few works related to group velocity
dispersion [8], second order mode cut-off [9], bandgap
properties, and field distribution of the square-lattice
PCF [10] have been reported, because they show different
optical behaviors compared with other geometries.

In this paper, due to the lack of information on the
optical properties, group velocity dispersion, effective
area, and effective index in a wide wavelength range,
for PCFs with square-lattice air-hole cladding structure,
we will numerically show them with respect to the wide
range of hole-to-hole distance (or pitch) A and the
ratio of diameter of hole d to pitch d/A. We select the
range of the structural parameters to investigate the fiber
which d/A is 0.5~0.9 and pitch is 1~4 pm over the
wavelength range from 600 to 1600 nm, because the
optical properties of the PCF highly depend on the
structural geometry such as air-filling fraction d/A and
pitch, A.

II. OPTICAL PROPERTIES OF THE
SQUARE-LATTICE PCFs

The dispersion properties of the square-lattice PCFs
have already been analyzed within a limited wavelength
and structural parameters with the finite-element method
[8]. In this paper, we employed the numerical Galerkin
method [11] with sine basis functions to solve the vec-
torial wave equation for lossless fused silica material
below:
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where n is the refractive index of the fiber shown in
Fig. 1, B is the propagation constant and ky is the wave
number in a vacuum. The basic idea is that the solution
is approximately expanded in terms of orthogonal basis
functions inside a numerical boundary. The approximated
solution is plugged into the original partial differential
equation. Integrating over the given boundary after multiplying
each basis function, we can convert the given vectorial
wave equation problem into a matrix eigenvalue equation.
To check the validity of the method, we compared the
experimental result [12] with our numerical result having
a hexagonal geometric structure with pitch and d/A equal
to 7.5 ym and 0.43, respectively. The error in the group
velocity dispersion was about 2%. The experimental result
of the dispersion coefficient at 1.55 pm was 32 ps/nm-
km, whereas our result was 31 ps/nm-km. Moreover, we
compared with the result from the multipole method
[13] which is the most accurate method, the dispersion
coefficient is 31.5 ps/nm-km. So, the numerical Galerkin's
method yields a very accurate value with about 2% mar-
ginal error.

Fig. 1 shows the schematic of the square-lattice PCF
investigated in this paper, for which circular hole diameter
and pitch along the vertical direction are the same as
those along the horizontal direction. In the simulation,
we used a 13-by-13 layer of holes and a solid defect at
the center. In order for PCF to support the mode properly
the modal profile is shown in Fig. 2 with a pitch of
3 um and a fixed wavelength of 1.55 pm. As you can
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FIG. 1. Schematic of the photonic crystal fiber. The
cladding consists of hole diameter d arranged in a square-
lattice with pitch A. A missing air hole at the center confines
the light within the fiber axis.

see the field is well formed and highly concentrated on
the core region as d/A is increased from (a) 0.5 to (b) 0.9.

One of the important optical parameters of the fiber
is the group velocity dispersion which determines the
communication bandwidth to carry the capacity of the
information. The group velocity dispersion D is calculated
from the second derivative of effective index ne versus
the wavelength.
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where ¢ is the velocity of light in vacuum. Fig. 3 shows
the group velocity dispersion of the square-lattice PCFs
with different values of d/A for a pitch of (a) 1 um,
(b) 2 um and (c¢) 8 pm, respectively. In Fig. 3 (a) the
dispersion value at a wavelength of 1.55 pm is obtained
as -278 ps/nm-km when d/A = 0.6 and the slopes of

(b)

FIG. 2. Intensity distribution at 1.55 ym for the square-
lattice PCF having A=3 1m, and d/A of (a) 0.5 and (b) 0.9.
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the dispersion in all cases have negative values in C
and L communication windows. So it can be used as
a dispersion compensating fiber. When the pitch is greater
than 2 pm the dispersion increases monotonically with
a positive value in the communication windows as shown
in Fig. 3 (b)-(c). Also the dispersion curves are almost
independent on d/A, when the pitch is greater than 7 pm.

For the cases of d/A = 0.5 and pitch A = 3 um, the
triangular PCFs have been studied [14] [15]. The dis-
persion of square-lattice PCF is higher than that of the
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FIG. 3. Group velocity dispersion of the square-lattice
PCF with a pitch (a) 1 um, (b) 2 um, and (c) 8 um.

triangular case when the pitch is small (A = 1 pm). On the
contrary, when A = 3 um, triangular PCFs have higher
dispersion parameter than that of the square case.

The effective mode area as a measure of nonlinearities
is a very important property to understand the guided
mode. Small effective area gives a high power density
required -by non-linear effects [16]. Moreover, the effective
area A.r =n@’ is related to the spot size o, which is an
important parameter related to the confinement loss of
a fiber [17]. The effective area of triangular PCFs have
been already shown in Ref. [15]. The effective area A
over the wavelength range from 0.6 to 1.6 um is calcu-
lated using the following formula:
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where Et is the component of the transverse electric field.
Fig. 4 shows the effective area of the fundamental mode
as a function of wavelength regime of 0.6~1.6 um for
the pitch of (a) 1 pm and (b) 2 pm. In Fig. 4 (a) the
effective area decreases as the air-filling fraction is incr-

Agps =

10
Fan A=1pum
c 8r|—an=05
= - -diA=06
o ol e
o
<
(]
2
8
=
w
0 I ) i 1
0.6 0.8 1.0 1.2 1.4 1.6
Wavelength (um)
(a)
10
A=2um
e A = 0.5
<« gl |---da=06
E ..... diaA=07
= —-—-diA=0.8
© ——-diA=08
o &f =
<
o -
=2 _.--TT
S AT
= | e T T
W po T e
2 i 1 I I
0.6 0.8 1.0 12 14 1.6
Wavelength (um)
(b)

FIG. 4. The effective area as a function of wavelength for
different hole sizes with the pitch (a) 1 um and (b) 2 um.
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eased. The values of the effective area of the square-
lattice PCFs are larger than those of the triangular case
[8], which is caused by the geometrical difference due
to the air-filling fraction [8]. When the pitch is small
and the air-hole spacing is large, the effective area of
the PCF has a small value of about 1.9 pm’.

Fig. 5 shows the effective refractive indices of the
fundamental mode as a function of wavelength for the
pitch of (a) 1 um and (b) 2 pm. As the d/A increases,
the variation of the effective index is also increasing.
By changing the air filling fraction of the PCFs with
three kinds of air hole spacing as shown in Fig. 6. The
effective area, the effective index, and the dispersion are
shown at a wavelength of 1550 nm with respect to d/A.
In Fig. 6 (a) the effective area decreases as the air-
filling fraction increases, whereas the effective area with
pitch of 1 pym, and d/A of 0.5 increases as the air-filling
fraction decreases due to almost the same value of the
effective core index and the effective cladding index. The
effective index is decreasing as the air-filling fraction
increases due to lowering the effective cladding index
as shown in Fig. 6 (b). According to Fig. 6 (c), group velo-
city dispersion has a strong negative dispersion at the
smallest pitch and d/A of 0.55 approximately. When the
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FIG. 5. The effective refractive index as a function of
wavelength with the pitch (a) 1 pm and (b) 2 pm.

pitch is large compared to the wavelength, the effect of
the waveguide dispersion is weakened.

III. DISCUSSION AND RESULTS

We have shown several optical properties of the square-
lattice PCFs such as modal profile, group velocity dispersion,
effective area, and effective index. The minimum group

16
A=1um
---A=z2um
2y e e A=3pum
o~
=4
=
©
8
<
2
g
£ 4
wl
0

0.5 0.6 0.7 0.8 0.9

Air Filling Fraction (d/A)
(a)
1.44
140f T TTTTeeeel
x hadil S
Q
°
=
o 1.36
2
8
=
w132 A=1pm
~ - -A=2pum
----- A=3pum
1.28 ! L 4
Air Filling Fraction (d/A)
(b)
200
100} femmmm === T
;Ec O —A=1um
& -~=-A=2pum
= R A=3pum
o
£ 100
o
G
-200 \/
_300 Il 1 )
0.5 0.6 0.7 0.8 0.9
Air Filling Fraction (d/A)
()

FIG. 6. It shows that (a) effective area, (b) effective
refractive index and (c) dispersion with respect to air-
filling fraction at a wavelength of 1.55 pm.
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velocity dispersion was obtained about -300 ps/nm- km

when d/A = 0.55 at the wavelength 1.55 pm with a

pitch of 1 um with high negative dispersion and strong
field confinement, such PCF can be used as dispersion
compensating fiber. When the PCF has the pitch of 1
um and d/A is 0.9, the effective area and the group
velocity dispersion have a minimum value of about 1.9
um’ and a strong negative dispersion, respectively. The
effective area is larger than that of the triangular case,
which is caused by the geometric difference. When the
pitch is 3 um, together with the maximum air-filling fra-
ction, the modal field distribution is quite confined in the
first ring of holes.
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