Unsteady Viscous Flow over Elliptic Cylinders At Various Thickness with Different Reynolds Numbers

  • Kim Moon-Sang (School of Aerospace and Mechanical Engineering, Hankuk Aviation University) ;
  • Sengupta Ayan (Department of Aerospace Engineering, Iowa State University)
  • 발행 : 2005.03.01

초록

Two-dimensional incompressible Navier-Stokes equations are solved using SIMPLER method in the intrinsic curvilinear coordinates system to study the unsteady viscous flow physics over two-dimensional ellipses. Unsteady viscous flows over various thickness-to-chord ratios of 0.6, 0.8, 1.0, and 1.2 elliptic cylinders are simulated at different Reynolds numbers of 200, 400, and 1,000. This study is focused on the understanding the effects of Reynolds number and elliptic cylinder thickness on the drag and lift forces. The present numerical solutions are compared with available experimental and numerical results and show a good agreement. Through this study, it is observed that the Reynolds number and the cylinder thickness affect significantly the frequencies of the force oscillations as well as the mean values and the amplitudes of the drag and lift forces.

키워드

참고문헌

  1. Badr, H. M., Dennis, S. C. R. and Kocabiyik, S., 2001, 'Numerical Simulation of the Unsteady Flow Over an Elliptic Cylinder at Different Orientations,' International Journal for Numerical Methods in Fluids, Vol. 37, pp. 905-931 https://doi.org/10.1002/fld.196
  2. Berger, E. and Wille, R., 1972, 'Periodic Flow Phenomena,' Ann. Rev. Fluid Mech., Vol. 4, pp. 313-340 https://doi.org/10.1146/annurev.fl.04.010172.001525
  3. Blackburn, H. M. and Henderson, R. D., 1999, 'A Study of Two-Dimensional Flow Past an Oscillating Cylinder,' Journal of Fluid Mechanics, Vol. 385, pp. 255-286 https://doi.org/10.1017/S0022112099004309
  4. Chou, M H. and Huang, W., 1996, 'Numerical Study of High-Reynolds-Number Flow Past a Bluff Object,' International Journal for Numerical Methods in Fluids, Vol. 23, pp. 711-732 https://doi.org/10.1002/(SICI)1097-0363(19961015)23:7<711::AID-FLD445>3.0.CO;2-P
  5. D'Alessio, S. J. D., Dennis, S. C. R. and Nguyen, P., 1999, 'Unsteady Viscous Flow Past an lmpulsively Started Oscinating and TransIating Elliptic Cylinder,' Journal of Engineering Mathematics, Vol. 35, pp. 339-357 https://doi.org/10.1023/A:1004443422805
  6. Jordan, S. K. and Fromm, J. E., 1972, 'Osicllatory Drag, Lift, and Torque on a Circular Cylinder in a Uniform Flow,' Physics of Fluids, Vol. 15, No. 3, pp. 371-376 https://doi.org/10.1063/1.1693918
  7. Kang, S. and Choi, H., 1999, 'Laminar Flow Past a Rotating Circular Cylinder,' Physics of Fluids, Vol. 11, No. 11, pp. 3312-3321 https://doi.org/10.1063/1.870190
  8. Lim, C. K., 1991, 'Numerical Simulation of Non-lifting Flow Over Two-dimensional Elliptic Cylinders,' MS Thesis, Iowa State University
  9. Linnick, M. N. and Fasel, H. F., 2003, 'A High-Order Immersed Boundary Method for Unsteady Incompressible Flow Calculations, AIAA Paper 2003-1124
  10. Manzari, M. T., 2003, 'A Time-accurate Finite Element Algorithm for Incompressible Flow Problems,' International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 13, No. 2, pp. 158-177 https://doi.org/10.1108/09615530310459324
  11. Mittal, R. and Balachandar, S., 1996, 'Direct Numerical Simulation of Flow Past Elliptic Cylinders,' Journal of Computational Physics, Vol. 124, pp. 351-367 https://doi.org/10.1006/jcph.1996.0065
  12. Nair, M. T. and Sengupta, T. K., 1996, 'Onset of Asymmetry : Flow Past Circular and Elliptic Cylinders,' International Journal for Numerical Methodss in Fluids, Vol. 23, pp. 1327-1345 https://doi.org/10.1002/(SICI)1097-0363(19961230)23:12<1327::AID-FLD476>3.0.CO;2-Q
  13. Nair, M. T. and Sengupta, T. K., 1997, 'Unsteady Flow Past Elliptic Cylinders,' Journal of Fluids and Structures, Vol. 11, pp. 555-595 https://doi.org/10.1006/jfls.1997.0095
  14. Ota, T. , Nishiyama, H. and Taoka, Y., 1987, 'Flow Around an Elliptic Cylinder in the Critical Reynolds Number Regime,' Journal of Fluids Engineering, Vol. 109, pp. 149-155 https://doi.org/10.1115/1.3242635
  15. Park, D. S. , Ladd, D. M. and Hendricks, E. W., 1994, 'Feedback Control of von Karman Vortex Shedding Behind a Circular Cylinder at Low Reynolds Numbers,' Physics of Fluids, Vol. 6, No. 7, pp. 2390-2405 https://doi.org/10.1063/1.868188
  16. Park, J., Kwon, K. and Choi, H., 1998, 'Numerical Solutions of Flow Past a Circular Cylinder at Reynolds Number up to 160,' KSME International Journal, Vol. 12, No. 6, pp. 1200-1205
  17. Patankar, S. V., 1980, 'Numerical Heat Transfer and Fluid Flow,' Hemisphere, New York
  18. Patankar, S. V. and Spalding, D. A., 1972, 'A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows,' International Journal of Heat and Mass Transfer, Vol. 15, pp. 1787-1806 https://doi.org/10.1016/0017-9310(72)90054-3
  19. Patel, V. A., 1981, 'Flow Around the Impulsively Started Elliptic Cylinder at Various Angles of Attack,' Computers and Flulds, Vol. 9, No. 4, pp. 435-462 https://doi.org/10.1016/0045-7930(81)90014-1
  20. Perry, A. E, Chong, M. S. and Lim, T. T., 1982, 'The Vortex-Shedding Process Behind Two-Dimensional Bluff Bodies,' Journal of Fluid Mechanics, Vol. 116, pp. 77-90 https://doi.org/10.1017/S0022112082000378
  21. Sengupta, A., 2003, 'Numerical Simulation of Unsteady Incompressible Row Passed Two- Dimensional Elliptic Cylinders,' MS Thesis, Iowa state University
  22. Wilhamson, C. H. K., 1996, 'Vortex Dynamics in the Cylinder Wake,' Annual Review of Fluid Mechanics, Vol. 28, pp. 477-539 https://doi.org/10.1146/annurev.fl.28.010196.002401