Fault Tolerant Control of Magnetic Bearings with Force Invariance

  • Na, Uhn-Joo (Division of Mechanical and Automation Engineering, Kyungnam University)
  • Published : 2005.03.01

Abstract

A magnetic bearing even with multiple coil failure can produce the same decoupled magnetic forces as those before failure if the remaining coil currents are properly redistributed. This fault-tolerant, force invariance control can be achieved with simply replacing the distribution matrix with the appropriate one shortly after coils fail, without modifying feedback control law. The distribution gain matrix that satisfies the necessary constraint conditions of decoupling linearized magnetic forces is determined with the Lagrange Multiplier optimization method.

Keywords

References

  1. Ahn, H. and Han, D., 2003, 'System Modehng and Robust Control of an AMB Spindle Part II A Robust Controller Design and its Implementation,' KSME International Journal, Vol. 17 No. 12, pp. 1855-1866
  2. Allaire, P. E., 1989, 'Design and Test of a Magnetic Thrust Bearing,' Journal of the Franklin Institute, Vol. 326, No. 6, pp. 831-847 https://doi.org/10.1016/0016-0032(89)90006-9
  3. Bornstein, K. R., 1991, 'Dynamic Load Capabilities of Active Electromagnetic Bearings,'ASME Trans. Journal of Tribology, Vol. 113, pp. 598-603 https://doi.org/10.1115/1.2920665
  4. Jeon, S., Ahn, H. and Han, D., 2002, 'Model Validation and Controller Design for Vibration Suppression of Flexible Rotor Using AMB,' KSME International Journal, Vol. 16 No. 12, pp. 1583-1593
  5. Keith, F. J., Williams, R. D. and Allaire, P. E., 1990, 'Digital Control of Magnetic Bearings Supporting a Multimass Flexible Rotor,' STLE Tribology Transactions, Vol. 33, pp. 307-314 https://doi.org/10.1080/10402009008981960
  6. Lee, C. and Kim, J., 1992, 'Modal Testing and Suboptimal Vibration Control of Flexible Rotor Bearing System by Using a Magnetic Bearing,' ASME Trans. Journal of Dynamic System,Meaurement, and Control, vol. 114, pp. 244-252 https://doi.org/10.1115/1.2896521
  7. Lyons, J. P., Preston, M. A., Gurumoorthy, R. and Szczesny, P. M., 1994, 'Design and Control of a Fault-Tolerant Active Magnetic Bearing System for Aircraft Engine,' Proceedings of the Fourth International Symposium on Magnetic Bearings, ETH Zurich, pp. 449-454
  8. Maslen, E. H. and Meeker, D. C., 1995, 'Fault Tolerance of Magnetic Bearings by Generalized Bias Current Linearization,' IEEE Trans. Magnetics, Vol. 31, pp. 2304-2314 https://doi.org/10.1109/20.376229
  9. Maslen, E. H., Sortore, C. K., Gilhes, G. T., Wilhams, R. D., Fedigan, S. J. and Aimone, R. J., 1999, 'Fault Tolerant Magnetic Bearings,' ASME Trans. Journal of Engineering for Gas Turbines and Power, Vol. 121, pp. 504-508 https://doi.org/10.1115/1.2818501
  10. Matsumura, F. and Yoshimoto, T., 1986, 'System Modeling and Control of a Horizontal- Shaft Magnetic-Bearing System,' IEEE Trans. Magnetics, Vol. 22, pp. 197-206 https://doi.org/10.1109/TMAG.1986.1064296
  11. Meeker, D. C., 1996 'Optimal Solutions to the Inverse Problem in Quadratic Magnetic Actuators,' Ph. D. Dissertation, Mechanical Engineering, University of Virginia
  12. Na, U. J. and Palazzolo, A. B., 2000, 'Fault-Tolerance of Magnetic Bearings with Material Path Reluctances and Fringing Factors,' IEEE Trans. Magnetics, Vol. 36, No. 6, pp. 3939-3946 https://doi.org/10.1109/20.914343
  13. Na. U. J. and Palazzolo. A. B., 2001, 'The Fault-Tolerant Control of Magnetic Bearings With Reduced Controller Outputs,' ASME Trans. Journal of Dynamic Systems, Measurement, and Control, Vol. 123, pp. 219-224 https://doi.org/10.1115/1.1369356
  14. Salm, J. and Schweitzer, G., 1984, 'Modeling and Control of a Flexible Rotor with Magnetic Bearing,' Proceedings of the Third International Conference on Vibrations in Rotating Machinery, pp. 553-561