Comparison of Physico-Chemical Properties between Waxy and Non-waxy Wheat Grains

찰성밀과 보통밀간의 이화학적 특성 비교

  • 이춘기 (농촌진흥청 작물과학원) ;
  • 남중현 (농촌진흥청 작물과학원) ;
  • 강문석 (농촌진흥청 작물과학원) ;
  • 구본철 (농촌진흥청 작물과학원) ;
  • 박광근 (농촌진흥청 작물과학원) ;
  • 김재철 (농촌진흥청 작물과학원) ;
  • 손영구 (농촌진흥청 작물과학원) ;
  • 박정화 (농촌진흥청 작물과학원) ;
  • 이영호 (농촌진흥청 작물과학원) ;
  • 손종록 (농촌진흥청 작물과학원) ;
  • 민용규 (충북대학교 식품공학과)
  • Published : 2005.12.01

Abstract

For the purpose to verify the physico­chemical properties of Korean waxy wheat, comparative analyses between waxy wheat lines and their respective maternal parents were performed on mixing and pasting properties, and flour particle sizes. The particle sizes of waxy wheat flour were significantly larger than those of their parents when milled in a same condition. Although the protein contents of flour in waxy wheat lines tested were high as much as those of bread wheat, the quality parameters showed lower baking uses based on sedimentation volumes and mixing characteristics. Waxy flour required more water than non-waxy flour to obtain the proper mixogram. Waxy wheat flour showed more or less higher onset pasting temperatures and much higher breakdown viscosities than their respective parent flour in the Rapid Viscograph test. Moreover, peak viscosity temperatures and final viscosities were dramatically reduced in waxy wheat lines by showing $79.4 - 81.7^{\circ}C$ and 101 ­116.9 RVU, respectively, compared to their parents in that the temperatures above $95^{\circ}C$ and the viscosity ranges of 148 -171.8 RVU.

1. 밀가루 입자분포가 수적으로는 직경 $0.496{\mu}m$ 근처에서 가장 많은 입자가 분포하는 unimodal 곡선형태, 표면적으로 나타낼 경우에는 $0.72{\~}0.79{\mu}m$, $17.2{\~}22.7{\mu}m$$101{\~}121{\mu}m$의 직경에서 각각 peak를 갖는 trimodal 곡선형태를 보였다. 2.밀가루 입도분포에서 찰성 밀 계통들 모두가 모본품종보다 밀가루 입자직경이 크고 비표면적은 작게 나타남으로서 모본 품종보다 미분화가 잘 안됨을 나타내주었다. 용적기준으로 볼 때 모본의 경우 평균입자 직경이 $97.8{\~}128.5{\mu}m$ 범위로서 올그루밀<우리밀<금강밀<그루밀의 내림순위로 큰 직경을 보였고, 찰성밀 계통의 경우는 $106.8{\~}128.5{\mu}m$ 범위로서 수원 292호$9.6\%$(우리밀)에서 $13.6\%$ (금강밀)까지 변이가 큰 반면에 찰성 계통의 경우는 그 범위가 $12.7{\~}13.6\%$로서 계통간 큰 차이 없이 높은 수치를 보였으나 침전가는 낮게 나타남으로서 찰성밀 계통의 단백질이 양적으로는 빵용밀에 버금갈 만큼 많을지라도 질적으로는 크게 못 미치는 것으로 나타났다. 4. 보통밀의 경우 peak 높이가 가수량에 상관없이 금강밀, 그루밀, 올그루밀 및 우리밀 순으로 높았다. 찰성 밀가루에서는 최대 반죽높이와 7분 후 반죽높이가 가수량이나 단백질 함량과 상관없이 보통밀보다 월등히 높고, 반죽 발달시간은 단축됨으로서 보통밀가루와는 다소 상이한 반죽특성을 보였다. 5. 최고점도시 온도가 찰성밀에서 $79.4^{\circ}C$(금강밀)${\~}$$81.1^{\circ}C$(수원 292호와 SW97110) 범위를 나타냄으로서 보통밀의 $95^{\circ}C$에 비해 현저히 낮은 온도를 보였다. 최저점도는 SW97105를 제외하고 찰성밀 계통이 각각의 모본보다 점도가 3.5${\~}$10.7RVU 정도 낮았다. 6. Breakdown점도와 최종점도에서 찰성밀과 보통밀간 차이가 명확히 나타났는데, Breakdown점도의 경우는 찰성밀이 80.2 (수원 29그호)${\~}$l16.2 RVU (SW97134) 범위로서 보통밀 46.5 (그루밀)${\~}$63.5 RVU (우리밀)에 비해 높았으나, 최종점도의 경우는 찰성밀이 101.0 (SW97110)${\~}$l16.9 RVU (SW97105) 범위로서 보통밀 148.0 (우리밀)${\~}$171.8 RVU (올그루밀)보다 낮았다.

Keywords

References

  1. AACC. 1990. Approved Method of the American Association of Cereal Chemists. 8th ed. Method 44-15A. Method 46-13. Method 08-01. Method 55-10. Method 54-40A. AACC Method 56-61A
  2. Bechtel, D. B., I. Zayas, L. Kalcikau, and Y. Pomeranz. 1990. Size distribution of wheat starch granules during endosperm development. Cereal Chemistry 67 : 59-63
  3. Buttrose, M. S. 1960.Submicroscopic development, and structure of starch granules in cereal endosperms. J. Ultrastruct. Res. 4 : 231-257 https://doi.org/10.1016/S0022-5320(60)80021-4
  4. Buttrose, M. S. 1962.The influence of environment on the shell structure of starch granules. J. Cell Biol. 14 : 159-167 https://doi.org/10.1083/jcb.14.2.159
  5. D'Appolonia, B. L. and K. A. Gilles. 1971. Effect of various starches in baking. Cereal Chemistry 48 : 625-636
  6. Dengate, H. N., D. W. Baruch, and P. Meredith. 1978. The density of wheat starch granules: A tracer dilution procedure for determining the density of an immiscible dispersed phase. Staerke 30 : 80-84 https://doi.org/10.1002/star.19780300304
  7. Evers, A. D. 1973. The size distribution among starch granules in wheat endosperm. Starch 25 : 303-308 https://doi.org/10.1002/star.19730250905
  8. Evers, A. and J. Lindley. 1977. The particle-size distribution in wheat endosperm starch. J. Sci. Food. Agric. 28 : 98-102 https://doi.org/10.1002/jsfa.2740280116
  9. French, D. 1984. Organization of starch granules. pp 183-247 in: Starch: Chemistry and Technology, 2nd ed. R.I. Whittler, J.N. BeMilter, and E.F. Paschall, eds. Academic Press, New York
  10. Gerard, C., C. Barron, P. Colonna, and V. Planchot. 2001. Amylose determination in genetically modified starches. Carbohydrate Polymers 44 : 19-27 https://doi.org/10.1016/S0144-8617(00)00194-6
  11. Gidley, M. J. 1992. Structural order in starch granules and its loss during gelatinisation. In gums and stabilisers for the food industry. 6ed. GO Phillips, PA Williams, DJ Wedlock, pp. 87-92. Oxford: IRL
  12. Haberer, K. 1994. Evaluation of starch quality in relation to mixing characteristics of Minnesota grown wheat varieties. MSC. Thesis. University of Minnesota, United States of America
  13. Haddad, Y. E., A. Mabille, J. A. Mermet, and J. C. Benet. 1999. Rheological properties of wheat endosperm with a view on grinding behaviour, Powder Technology 105 : 89-94 https://doi.org/10.1016/S0032-5910(99)00122-9
  14. Hizukuri, S., Y. Takeda, J. Abe, J. Hanashiro, G. Matsunobu, and H. Kiyota. 1997. In: P.J. Frazier, P. Richmond, A.M. Daonald editors. Starch: Structure and Functionality. London Royal Society of Chemistry, p 121
  15. Igrejas G, B. Faucher, D. Bertrand, D. Guibert, P. Leroy, and G. Branlard. 2002. Genetic analysis of the size of endosperm starch granules in a mapped segregating wheat population. J. of .Cereal Science 35 : 103-107 https://doi.org/10.1006/jcrs.2001.0422
  16. Jenkins, P. J. and A. M. Donald. 1995. The influence of amylose on starch granule structure, Int. J. Biol. Macromol. 17 : 315-321 https://doi.org/10.1016/0141-8130(96)81838-1
  17. Kent, N. L. 1966. Subaleurone endosperm cells of high protein content. Cereal Chem. 43 : 585-601
  18. Lineback, D. R. and V. F. Rasper. 1988. Wheat Carbohydrates. Pages 277-322 in: Wheat Chemistry and Technology(by Pomeranz ed), Vol 1. american Association of Cereal Chemists, St. Paul, MN, USA
  19. Manners, D. J. 1989. Recent developments in our understanding in amylopectin structure, Carbohydrate Polym. 11 : 87-112 https://doi.org/10.1016/0144-8617(89)90018-0
  20. Nakamura, T., M. Yamamori, H. Hirano, and S. Hidaka. 1993. Identification of three Wx proteins in wheat (Triticum aestivum L.). Biochem. Genet. 31 : 75-86 https://doi.org/10.1007/BF02399821
  21. Peterson, D. G. and R. G. Fulcher. 2001. Variation in Minnesota HRS wheats: Starch granule size distribution. Food Research International 34 : 357-363 https://doi.org/10.1016/S0963-9969(00)00175-7
  22. Pomeranz, Y. 1988. Composition and functionality of wheat flour components. In 'Wheat Chemistry and Technology' (Y. Pomeranz ed.), Vol II, American Association of Cereal Chemists, St. Paul, MN, USA pp 219-370
  23. Sahlstrom, S., E. Brathen, P. Lea, and K. Autio. 1998. Influence of Starch Granule Size Distribution on Bread Characteristics. J. of Cereal Science 28: 157-164 https://doi.org/10.1006/jcrs.1998.0192
  24. Sandstedt, R. M. 1946.Photomicrographic studies of wheat starch. I. Development of the Starch granules. Cereal Chem. 23 : 337-359
  25. Sebecic, B. and B. Sebecic. 1996. Wheat flour starch granule-size distribution and rheological properties of dough. Part 4. Farinographic measurement. Die Nahrung 41 : 256-260
  26. Takeda, Y. and S. Hizukuri. 1987. Structures of rice amylopectins with high and low affinities for iodine. Carbohydr. Res. 168 : 79-88 https://doi.org/10.1016/0008-6215(87)80008-3
  27. Tang, H. R., J. Godward, and B. Hills. 2000. The distribution of water in native starch granules- a multinuclear NMR study. Carbohydrate Polymers 43 : 375-387 https://doi.org/10.1016/S0144-8617(00)00183-1
  28. Williams, P. C., F. D. Fuzina, and I. Hlynka. 1970. A rapid colorimetric procedure for estimationg the amylose content of starches and flours. Cereal Chem. 47: 411-420
  29. Yamamori, M., S. Fujita, K. Hayakawa, J. Matsuke, and T. Yasui. 2000a. Genetic limination of starch granule protein, SGP-l, of wheat generates an altered starch with apparent high amylose. Theor. Appl Genet 101 : 21-29 https://doi.org/10.1007/s001220051444
  30. Yamamori, M. and N. T. Quynh. 2000b. Differential effects of Wx-Al, -BI and -D1 protein deficiencies on apparent amylose content and starch pasting properties in common wheat. Theor Appl Genet 100 : 32-38 https://doi.org/10.1007/s001220050005
  31. Yasui, S., T., J. Matsuki, T. Sasaki, and M. Yamamori. 1996. Amylose and lipid contents, amylopectin structure, and gelatinization properties of waxy wheat (Triticum aestivum L.) starch. J. of Cereal Science 24 : 131-137 https://doi.org/10.1006/jcrs.1996.0046
  32. Yasui, T., J. Matsuki, T. Sasaki, and M. Yamamori. 1997. Waxy endosperm mutants of bread wheat (Triticum aestivum L.) and their starch properties. Breed Science 47 : 161-163
  33. Zeng, M., C. F. Morris, I. L. Betely, and C. W. Wrigley. 1997. Sources of variation for starch gelatinization, pasting, and gelation properties in wheat. Cereal Chemistry 74 : 63-71 https://doi.org/10.1094/CCHEM.1997.74.1.63
  34. Zobel, H. F. 1988.Molecules to granules: A comprehensive starch reviews. Starch 40 : 44-50 https://doi.org/10.1002/star.19880400203
  35. 이춘기, 남중현, 민용규. 2003. 국산 찰성밀의 이화학적 특성. 충북대 박사학위논문
  36. 작물시험장. 1996. 시험연구보고서(맥류편)
  37. 작물시험장. 1999. 시험연구보고서(맥류편)
  38. 작물시험장. 2000. 시험연구보고서(맥류편)