Estimation of Pile Resistance Factor by CPT Based Pile Capacity

CPT결과를 이용한 항타말뚝 지지력 평가를 위한 저항계수 산정

  • Kim Dae-Ho (Dept. of Highways & Bridge, Daewoo Engrg. Co.) ;
  • Lee Jun-Hwan (Dept. of Civil Engrg., Yonsei Univ.) ;
  • Kim Bum-Joo (Dam Safety Research Center, Korea Institute of Water and Environment, Korea Water Resources Corporation)
  • 김대호 (대우엔지니어링 도로사업부) ;
  • 이준환 (연세대학교 사회환경시스템공학부) ;
  • 김범주 (한국수자원공사 수자원연구원 댐안전연구소)
  • Published : 2005.12.01

Abstract

Application of Limit State Design in geotechnical engineering has become world-widely popular. While LRFD code in the North America presents geotechnical load and resistance factors, the values of resistance factors proposed by these methods are still unstable with limited application. CPT has been widely used for the pile design and various methods have been proposed to estimate the bearing capacity of piles. In this paper, resistance factors for representative pile design methods based on CPT results are evaluated. Field pile load test and CPT results were collected and analyzed in order to obtain necessary statistical data and resistance factors. Resistance factors of the base, shaft, and total capacity are estimated. From fisrt order second moment (FOSM) analysis, resistance factors of $0.30{\sim}0.55$ are estimated for total load capacity.

신뢰성 기반의 한계상태설계법(Limit State Design; LSD)의 지반공학적 적용은 세계적으로 확산추세이며, 북미지역의 경우 일부 시방서에 하중 및 저항에 의한 LRFD 설계법이 지반공학적 설계에 적용되고 있다. 그러나 지금까지 제안되어 온 지반공학적 저항계수는 상당히 포괄적인 값이며, 이와 관련된 연구는 아직까지 초기단계라 할 수 있다. 콘관입시험은 대표적인 현장시험으로 특히 말뚝 설계에서 유용하게 활용되고 있으며, 다양한 말뚝 지지력 산정법이 제시되어 왔다. 본 연구에서는 콘관입시험을 이용한 항타 말뚝 지지력 평가를 위한 저항계수를 산정하고자 한다. 이를 위하여 여러 지역에서 수행된 말뚝재하시험과 콘관입시험 결과를 수집하여 확률적 분석을 수행하였으며, 이를 종합하여 저항계수 산정에 적용하였다. 본 연구에서는 전체지지력뿐만 아니라 말뚝의 선단 및 주면 지지력 각각에 대한 저항계수 또한 도출하고자 하였다. 저항계수 산정 결과, 목표신뢰도지수 $2.0{\sim}2.5$의 범위에서 전체지지력에 대한 저항계수 $0.35{\sim}0.55$범위를 나타내었다.

Keywords

References

  1. AASHTO (1994), LRFD Bridge and Construction Specifications, AASHTO, Washington, D.C
  2. Altaee, A., Fellenius, B. H., and Evgin, E. (1992), 'Axial Load Transfer for Piles in Sand. I. Tests on an Instrumented Precast Pile', Canadian Geotechnical Journal, Vol.29, No.1, pp.11-20 https://doi.org/10.1139/t92-002
  3. Aoki, N. and D. de Alencar (1975), 'An Approximate Method to Estimate the Bearing Capacity of Piles', Proc. 5th Pan-American Conference of Soil Mechanics and Foundation Engineering, Buenos Aires
  4. Briaud, J. L., Tucker, L. M., and NG, E. (1989a), 'Axially Loaded 5 Pile Group and Single Pile in Sand', Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering, ICSMFE, Rio de Janeiro, pp.1121-1124
  5. Briaud, J. L., Moore, B. H., and Mitchell, G. B. (1989b), 'Analysis of Pile Loading Tests at Lock and Dam 26', In ASCE Proceedings of the Foundation Engineering Congress: Current Principlesm and Practice, Evanston, 111. June 25-29, 1989, F. H. Kulhawy, ASCE, Geotechnical Special Publication 22, Vol.2, pp.925-942
  6. Bustamante, M. and Gianeselli, L. (1982), 'Pile Bearing Capacity Prediction by Means of Static Penetrometer CPT', Proc. of 2nd European Symposium on Penetration Testing, Amsterdam, pp.493-500
  7. De Beer, E. (1988), 'Different Behavior of Bored and Driven Piles', Prodeedings of the 2nd International Goeotechnical Seminar on Deep Foundatios on Bored and Auger Piles, Van Impe, W. F., Ghent, Belgium, pp.47-82
  8. Eurocode 7 (1993), Geotechnical Design Forth and Final Draft, European Comittee for Standardization, TC 250/SC7
  9. Hettler, A. (1993), 'Probabilistic Approach and Partial Safiety Factors for Driven Piles', Proceedings of the International Symposium on Limit State Design in Geotechnical Engineering, Copenhagen, May 26-28, Vol.1, pp.217-222
  10. Lee, J. H., R. Salgado, and Paik, K. H. (2003), 'Estimation of Load Capacity of Pipe Piles in Sand Based on Cone Penetration Test Results', Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.129, No.6, pp.391-403 https://doi.org/10.1061/(ASCE)1090-0241(2003)129:6(391)
  11. Kausoftas, D. C. (2002), 'High Capacity Piles in Very Dense Sands', Proceedings of the International Deep Foundations Congress, O'Neill, M. W, and Townsend, F. C, Orlando, February 14-16, Vol.1, pp.632-646
  12. Kay, J. N. (1993), 'Probabilistic Design of Foundations and Earth Structures', Probabilistic Methods in Geotechnical Engineering, Li, K. S., and Lo, S. C. R., Balkema, Rotterdam, pp.95-115
  13. Kim, K. J. (2002), Development of Resistance Factors for Axial Capacity of Driven Piles in North Carolina, Ph D thesis, North Carolina State University, Raleigh, North Carolina
  14. Kulhawy, F. H and Trautman, C. H. (1996), 'Estimation of In-Situ Test Uncertainty', Uncertainty in the Geologic Environment From Theory to Practice. C. D. Shackelford, P. P. Nelson, M. J. S. Roth, eds. ASCE, pp.269-286
  15. Matsumoto, T., Kusakabe, O., Suzuki, M., and Shogaki, T. (1993), 'Soil Parameter Selection for Serviceability Limit Design of a Pile Foundation in a Soft Rock', Proceedings of the International Symposium on Limit State Design in Geotechnical Engineenng, Copenhagen, May 26-18, Vol.1, pp.1-12
  16. Murad Y, Abu Farsakh, and Titi, H. H. (2004), 'Assessment of Direct Cone Penetration Test Methods for Predicting the Ultimate Capacity of Friction Driven Piles', Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.130, No.9, pp.935-944 https://doi.org/10.1061/(ASCE)1090-0241(2004)130:9(935)
  17. Okahara, M., Kimura, Y., Ochiai, H., and Matsui, K. (1993), 'Statistical Characteristics of Bearing Capacity of Single Pile', Proceedings of the International Symposium on Limit State Design in Geotechnical Engineering, Copenhagen, May 26-18, Vol.1, pp.351-362
  18. Orchant, C. J., Kulhawy, F. H., and Trautmann, C. H. (1988), Reliability-Based Foundation Design for Transmission Line Structrues Volume 2: Critical Evaluation of In Situ Test Methods, EL-5507 Final report, Report prepared by Cornell University for the Electric Power Research Institute, Palo Alto, CA
  19. Philipponnat, G. (1980), 'Methode Prtique de Calculd'un Pieu Isole a l'aide du Penetrometre Statique', Revue Francaise de Geotechnique, Vol.10, pp.55-64
  20. Schmertmann, J. H. (1978), Guidelines for Cone Penetration Test, Performance and Design, U.S. Dept. of Transportation, FHWA-TS-78-209
  21. Scott, B. (2002), 'Development of Load and Rrsistance Factor Design Method for Shallow Foundations', Ph D thesis, Purdue University, West Lafayette, Indiana
  22. Van Impe, W., DeBeer, E. E., and Louisberg, E. (1988), 'Prediction of Single Pile Bearing Capacity in Granular Soils from CPT Results', Procedings of the 1st International Symposium on Penetration Testing, ISOPT-1, Specialty Session, Orlando, Fla, Mareh20-24, 1988, pp.1-34
  23. Vesie, A. S. (1970), 'Tests on Instrumented Piles, Ogeeehee River Site', Journal of Soil Mechanics and Foundation Division, ASCE, Vol.96, No.SM2, pp.561-584
  24. Withiam, J. L., Voytko, E. P., Barker, R. M., Duncan, J. M., Kelly, B. C., Musser, S. C., and Elias, V. (2001), Load and Resistance Factor Design (LRFD) for Highway Bridge Substructures, Publication No FHWA HI-98-032, NHI Course No.13068, Fedral Highway Administration, Washington D.C
  25. Witzel, M. and Kempfert, H. J. (2005), 'A Simple Approach to Prediet the Load Settlement Behavior of Precast Driven Piles with due Consideration of the Driving Proeess', ASCE, Geotechnical Special Publication, No.17, May, pp.134-156
  26. Yoon, G. L. and O'Neill, M. W. (1997), 'Resistance Factors for Single Driven Piles from Experiments', Transportation Research Record. No.1569. pp.47-54