DOI QR코드

DOI QR Code

Comparison of the Nutritional Value of Chlorella ellipsoidea and Nannochloris oculata for Rotifers and Artemia Nauplii

  • Cabrera Tomas (Instituto de Investigaciones Cientificas Universidad de Oriente) ;
  • Bae Jean Hee (Department of Aquaculture, Pukyong National University) ;
  • Bai Sungchul C. (Department of Aquaculture, Pukyong National University) ;
  • Hur Sung Bum (Department of Aquaculture, Pukyong National University)
  • Published : 2005.12.01

Abstract

Microalgae are widely used for mass culture of the rotifer Brachionus plicatilis in aquaculture. Since the nutritional value of the rotifer is closely related to its food, the nutritional value of its food should be known in detail. Chlorella ellipsoidea and Nannochloris oculata are re­presentative food organisms for rotifers that are easily cultured. Therefore, the nutritional values of these micro algae were examined for ultrasmall, small, and large rotifers and Artemia nauplii. Chlorella ellipsoidea contained seven times more total fatty acids than N. oculata. The three types of rotifer fed N. oculata contained more amino acids than those fed C. ellipsoidea. However, the total fatty acids of the rotifers fed each microalga species differed according to the type of rotifer. Newly hatched Artemia nauplii contained more protein and had a higher dry weight than those fed microalgae for 6 h. As with the rotifers, the Artemia nauplii fed N. oculata contained more protein and amino acids than those fed C. ellipsoidea, while the reverse was true for the total fatty acid content. Our results suggest that N. oculata is a good supply of protein, while C. ellipsoidea is a good source of lipids as food organisms for rotifers and Artemia nauplii in aquaculture.

Keywords

References

  1. Ben-Amotz, A., R. FishIer and A. Schneller. 1987. Chemical composition of marine unicellular algae and rotifers with emphasis on fatty acids. Mar. Biol., 95, 31-36 https://doi.org/10.1007/BF00447482
  2. Borowitzka, M. 1988. Fats, oils and hydrocarbons. In: Microalgal Biotechnology, Borowitzka, M. and L. Borowitzka, eds. Cambridge Press, Cambridge, pp. 257-287
  3. Cabrera, T, J.H. Bae, S.C. Bai and S.B. Hur. 2005. Effects of microalgae and salinity on the growth of three types of the rotifer Brachionus plicatilis. J. Fish. Sci. Tech., 8, 70-75 https://doi.org/10.5657/fas.2005.8.2.070
  4. Cabrera, T. and S.B. Hur. 2001. The nutritional value of live foods on the larval growth and survival of Japanese flounder, Paralichthys olivaceus. J. Appl. Aquacult., 11, 35-53
  5. Cabrera, T., S.B. Hur and H.J. Kim. 1993. Lifespan and fecundity of three types of rotifer, Brachionus plicatilis by an individual culture. Bull. Kor. Fish. Soc., 26, 511-518
  6. Cho, S.H., S.B. Hur and J.Y. Jo. 2001. Effect of enriched live feeds on survival and growth rates in larval Korean rockfish, Sebastes schlegeli Hilgendorf. Aquacult. Res., 32, 199-208
  7. Dendrinos, P. and J.P. Thorpe. 1987. Experiments on the artificial regulation of the amino acid and fatty acid contents of food organisms to meet assessed nutritional requirements of larval, post larval and juvenile dover sole (Solea solea L.). Aquaculture, 61, 121-154 https://doi.org/10.1016/0044-8486(87)90364-4
  8. Eda, H., R. Murashige, Y. Oozeki, A. Hagiwara, B. Easthan, P. Bass, C. Tamaru and C. Lee. 1990. Factors affect-ing intensive larval rearing of stripped mullet, Mugil cephalus. Aquaculture, 91, 281-294 https://doi.org/10.1016/0044-8486(90)90194-R
  9. Fraser, A., J. Gamble and J. Sargent. 1988. Changes on lipid content, lipid class composition and fatty acid composition of developing eggs and unfed larvae of cod (Gadus morhus). Mar. Biol., 99, 307-313 https://doi.org/10.1007/BF02112122
  10. Folch, J., M. Lee and G. Sloane. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem., 226, 497-509
  11. Frolov, A., S. Pankov, K. Geradze and L. Spektorova. 1991. Influence of the biochemical composition of food on the biochemical composition of the rotifer Brachionus plicatilis. Aquaculture, 97, 181-202 https://doi.org/10.1016/0044-8486(91)90264-8
  12. Fu, Y., K. Hirayama and Y. Natsukai. 1991. Genetic divergence between S and L type strains of the rotifer Brachionus plicatilis O. F. Muller. J. Exp. Mar. Biol. Ecol., 151, 29-41 https://doi.org/10.1016/0022-0981(91)90013-M
  13. Furuita, H., H. Tanaka, T. Yamamoto, N. Suzuki and T. Takeuchi. 2002. Effects of high levels of n-3 HUFA in broodstock diet on egg quality and egg fatty acid composition of Japanese flounder, Paralichthys olivaceus. Aquaculture, 210, 323-333 https://doi.org/10.1016/S0044-8486(01)00855-9
  14. Furuita, H., T. Yamamoto, T. Shima, N. Suzuki and T. Takeuchi. 2003a. Effects of arachidonic acid levels in broodstock diet on larval and egg quality of Japanese flounder Paralichthys olivaceus. Aquaculture, 220, 725-735 https://doi.org/10.1016/S0044-8486(02)00617-8
  15. Furuita, H., H. Tanaka, T. Yamamoto, N. Suzuki and T. Takeuchi. 2003b. Supplemental effect of vitamin A in diet on the reproductive performance and egg quality of the Japanese flounder Paralichthys olivaceus (T & S). Aquacult. Res., 34, 461-467 https://doi.org/10.1046/j.1365-2109.2003.00831.x
  16. Fukusho, K., M. Okauchi, H. Tanaka, S. Wahyuni, P. Kraisingdcha and T. Watanabe. 1985. Food value of a rotifer Brachionus plicatilis, cultured with Tetraselmis tetrathele for larvae of a flounder Paralichthys olivaceus. Bull. Natl. Res. Inst. Aquacult., 7, 29-36
  17. Guillard, R. and J. Ryther. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detomla confervacea (Cleve) Gran. Can. J. Microbiol., 8, 229-239 https://doi.org/10.1139/m62-029
  18. Hayashi, T., Y. Suitani, M. Murakami, K. Yamaguchi and S. Konosu. 1985. Nitrogen distribution in marine zooplankton as diets for first larvae. Bull. Jap. Soc. Sci. Fish., 51, 10-47
  19. Hur, S.B., C.K. Lee and E.H. Lee. 1989. Selection of suitable phytofood organisms for the rotifer, Brachionus plicatilis cultivation in high and low water temperature seasons. J. Aquacult., 2, 91-106
  20. Hur, S.B. and H.J. Kim. 1988. Chlorella cultivation for mass culture of rotifers, Brachionus plicatilis. I. Selection of suitable Chlorella species. J. Aquacult., 1, 135-143
  21. Joo, J., K. Cho, C. Park, K. Cho, S. Chae and S. Ma. 1992. Food Analysis. Yulim Publishing Co., Seoul, pp. 565
  22. Mercier, L., C. Audet, J. de la Noue, B. Parent, C.C. Parrish and N.W. Ross. 2004. First feeding of winter flounder (Pseudopleuronectes americanus) larvae: Use of Brachionus plicatilis acclimated at low temperature as live prey. Aquaculture, 229, 361-376 https://doi.org/10.1016/S0044-8486(03)00399-5
  23. Munilla-Moran, R., J. Stark and A. Barbour. 1990. The role of exogenous enzymes in digestion in cultured turbot larvae (Scophthalmus maximus L.). Aquaculture, 88, 337-350 https://doi.org/10.1016/0044-8486(90)90159-K
  24. Phatarpekar, P.V., R.A. Sreepada, C. Pednekar and C.T. Achuthankutty. 2000. A comparative study on growth performance and biochemical composition of mixed culture of Isochrysis galbana and Chaetoceros calcitrans with monocultures. Aquaculture, 181, 141-145 https://doi.org/10.1016/S0044-8486(99)00227-6
  25. Perez, G. and F. Gatesoupe. 1988. The continuous distribution of rotifers increases the essential fatty acid reserve of turbot larvae, Scophthalmus maximus. Aquaculture, 72, 109-114 https://doi.org/10.1016/0044-8486(88)90151-2
  26. Rumengan, I., H. Kayano and K. Hirayama. 1991. Karyotypes of S and L type rotifers Brachionus plicatilis O. F. Muller. J. Exp. Mar. Biol. Ecol., 154, 171-176 https://doi.org/10.1016/0022-0981(91)90162-P
  27. Sargent, J., R. Henderson and D. Tocher. 1989. The lipids. In: Fish Nutrition. Halver, J.E. and R.W. Hardy, eds. Academic Press, London, 153-218
  28. Slover, H. 1983. Gas chromatography packed and capillary. Am. Oil. Cehm. Soc., Monograph, 10, 90-109
  29. Volkman, J., S. Jeffrey, P. Nichols, G. Rogers and C. Garland. 1989. Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol., 128, 219-240 https://doi.org/10.1016/0022-0981(89)90029-4
  30. Watanabe, T., T. arakawa, C. Kitajima and S. Fujita. 1984. Effects of nutritional quality of brood stock diets on reproduction of red sea bream. Bull. Jap. Soc. Sci. Fish., 50, 495-501 https://doi.org/10.2331/suisan.50.495
  31. Watanabe, T., T. Fusimura, M. Lee, K. Fukusho, S. Sato and T. Takeguchi. 1991. Effect of polar and nonpolar lipid from krill on quality of eggs of red sea bream Pagrus major. Nippon Suisan Gakkaichi, 57, 695-698 https://doi.org/10.2331/suisan.57.695
  32. Watanabe, T. and R. Vassallo-Agius. 2003. Broodstock nutrition research on marine finfish in Japan. Aquaculture, 227, 35-61 https://doi.org/10.1016/S0044-8486(03)00494-0
  33. Whyte, J. and W. Nagata. 1990. Carbohydrate and fatty acid composition of the rotifer, Brachionus plicatillis, fed monospecific diets of yeast or phytoplankton. Aquaculture, 89, 263-272 https://doi.org/10.1016/0044-8486(90)90131-6
  34. Yoon, D.H., J. Jeon and C.W. Park. 1989. Evaluation of fatty acids in Dunaliella tertiolecta, in various culture conditions. J. Aquacult., 2, 43-51

Cited by

  1. Anti-Inflammatory Effect of Chlorella ellipsoidea Extracted from Seawater by Organic Solvents vol.43, pp.1, 2010, https://doi.org/10.5657/kfas.2010.43.1.039
  2. 저서성 요각류 Tigriopus japonicus의 nauplii 생산에 미치는 미세조류의 영향 vol.42, pp.3, 2005, https://doi.org/10.5657/kfas.2009.42.3.268
  3. α-Glucosidase Inhibitory Activities of Lutein and Zeaxanthin Purified from Green Alga Chlorella ellipsoidea vol.17, pp.4, 2005, https://doi.org/10.1007/s11802-018-3465-2