Effects of GABAB Receptor Antagonist on the Cardiovascular Response of Adenosine A1 and Adenosine A2 Receptor Agonist in the Spinal Cord of the Rats

  • Shin, In-Chul (Department of Pharmacology, College of Medicine, Hanyang University)
  • Published : 2005.09.01

Abstract

Adenosine and GABA are known to be major inhitory neurotransmitters in the central nervous system and its receptors mediate various neurophamacological effects including cardiovascular modulatory effects. Inhibitory cardiovascular effects induced by intrathecal (i.t.) administration of adenosine $A_1$ receptor agonist and its modulation by cyclic AMP was suggested by our previous report. In this experiment, we examined the modulation of cardiovascular effects of adenosine $A_1$ receptor and adenosine $A_2$ receptor by $GABA_B$ receptors antagonist in the spinal cord. I.t. administration of 10 nmol of $N^6$-cyclohexyladenosine (CHA, an adenosine $A_1$ receptor agonist), I.t. administration of 2 nmol of 5'-(N-cyclopropyl)-carboxamidoadenosine (CPCA, an adenosine $A_2$ receptor agonist), pretreatment with 5-aminovaleric acid (a $GABA_B$ receptor antagonist, 50 nmol, i.t.) prior to administration of CHA and pretreatment with 5-aminovaleric acid (a $GABA_B$ receptor antagonist, 50 nmol, i.t.) prior to administration of CPCA were performed in anesthetized, artificially ventilated Sprague-Dawley rats. I.t. administration of 50 nmol of 5-aminovaleric acid significantly attenuated the inhibitory cardiovascular effects of CHA but did not attenuated the inhibitory cardiovascular effects of CPCA. It is suggested that cardiovascular responses of adenosine $A_1$ receptor is modulated by $GABA_B$ receptor and adenosine $A_2$ receptor is not modulated by $GABA_B$ receptor in the spinal cord.

Keywords

References

  1. Bacon, S. J. and Smith, A. D. (1988). Preganglionic sympathetic neurons innervating the rat adrenal medulla : immunocytochemical evidences of synaptic input from nerve terminals containing substance-P, GABA or 5-hydroxytryptamine. J. Auton. Nerv. Syst. 24, 97-100 https://doi.org/10.1016/0165-1838(88)90140-3
  2. Barraco, R. A., Campbell, W. R., Parizon, M.,, Shoener, E. P. and Shein, S. E. (1987). Cardiovascular effects of microinjections of adenosine analogs into the fourth ventricle of rats. Brain Res. 424, 17-25 https://doi.org/10.1016/0006-8993(87)91188-7
  3. Barraco, R. A, Janusz, C. A., Parizon, M., Posalek, P. M and Roberts, P. A. (1988). Cardiovascular effects of microinjection of adenosine into the nucleus tractus solitarius. Brain Res. Bull. 20, 129-132 https://doi.org/10.1016/0361-9230(88)90016-0
  4. Barraco, R. A, .Janusz, C. A, Shoener, E. P. and Simpson. L. L. (1990). Cardiorespiratory function is altered by picomol injections of 5'-N-ethylcarboxamidoadenosine into the nucleus tractus solitarius of rats. Brain Res. 507, 234-246 https://doi.org/10.1016/0006-8993(90)90277-I
  5. Brown, S. J., James, S., Reddington, M. and Richardson, P. J. (1990). Both A1 and $A_{2a}$ purine receptors regulate striatal acetylcholine release. J. Neurochem. 55, 31 -38 https://doi.org/10.1111/j.1471-4159.1990.tb08817.x
  6. Bruns, R. F., Fergus, J. H., Badger, E. W., Bristol, J. A., Santay, L. A., Hartman, J. D., Hays, S. J. and Huang, C. C. (1987). Binding of the $A_1$-selective adenosine antagonist 8-cyclopentyl-1,3-diproxylxanthine to rat brain membranes. Naunyn-Schmiedebergs Arch. Pharmacol. 335, 59-63 https://doi.org/10.1007/BF00165037
  7. Choca, J. I., Proudfit, H. K. and Green, R. D. (1987). Identification of $A_1$ and $A_2$ adenosine receptors in the rat spinal cord, J. Pharmacol. Exp. Ther. 242, 905-910
  8. Coardetti, R., Lo Conte, G., Moroni, F., Passani, M. B. and Peteu, G. (1984). Adenosine decrease aspartate and glutamate release from rat hippocampal slices. Eur. J. Pharmacol. 104, 19-26 https://doi.org/10.1016/0014-2999(84)90364-9
  9. Daly, J. W., Butts-Lamb, P. and Padgett, W. (1983). Subclass of adenosine receptors in the central nervous system: interaction with caffeine and related methylxanthines. Cell Mol. Biol. 3, 69-80
  10. Gerber, U. and Gahwiler, B. H. (1994). GABAB and adenosine receptors mediate enhancement of the $K^+$ current, $I_{AHP}$, by reducing adenylyl cyclase activity in rat CA3 hippocampal neurons. J. Neurophysiol. 72, 2360-2367 https://doi.org/10.1152/jn.1994.72.5.2360
  11. Goodman, R. R. and Snyder, S. H. (1982). Autoradiographic localization of adenosine receptor in rat brain using [$^3H$] cyciohexyladenosine. J. Neurosci. 2, 1230-1241
  12. Gordon, F. J. (1985). Spinal GABA receptors and central cardiovascular control, Brain Res. 328, 165-169 https://doi.org/10.1016/0006-8993(85)91338-1
  13. Hassessian, H., Prat, A., Champlain, J. D. and Couture, R (1991). Regulation of cardiovascular sympathetic neuons by substance P and gamma aminobutyric acid in rat spinal cord. Eur. J. Pharmacol. 202, 51-60 https://doi.org/10.1016/0014-2999(91)90252-L
  14. Hong, Y. and Henry, J. L. (1991). Phaclofen-reversible effects of GABA in the spinal cord of the rat. Eur. J. Pharmacol. 201, 171-177 https://doi.org/10.1016/0014-2999(91)90341-M
  15. Kamachi, G. L. and Ticku, M. K. (1990). Fuctional coupling of presynaptic $GABA_B$ receptors with voltage-gated $Ca^{2+}$ channel : Regulation by protein kinase A and C in cultured spinal cord neurons. Mol. Pharmacol. 38, 342-347
  16. Kamachi, G. L. and Ticku, M. K. (1991). A functional assay to measure postsynaptic gamma-aminobutyric $acid_B$ response in cultured spinal cord neurons : Heterologous regulation of the same $K^+$ channel. J. Phamacol. Exp. Ther. 256, 426-431
  17. Karbon, E. W. and Enna, S. J. (1985). Characterization of the relationship between gamma-aminobutyric $acid_B$, agonist and transmitter-coupled cyclic nucleotide-generating systems in rat brain. Mol. Pharmacol. 27, 53-59
  18. Koh, H. C., Shin, I. C., Hwang, S. J. and Paik, D. J. (1996). Modification of cardiovascular response of adenosine $A_1$ receptor agonist by cyclic AMP in the spinal cord of the rats. Neurosci. Lett. 219, 195-198 https://doi.org/10.1016/S0304-3940(96)13205-5
  19. Koh, H. C., Lee, T. K., Kang, J. S., Lee, C. H., Lee, H., Paik, D. J. and Shin, I. C. (2000). Modification of cardiovascular response of adenosine $A_2$ receptor agonist by adenylate cyclase in the spinal cord of the rats. Neurosci. Lett. 293, 45-48 https://doi.org/10.1016/S0304-3940(00)01486-5
  20. Lee, K. S. Reddington, M., Schubert, R. and Kreutzberg, G (1983). Regulation of the strength of adenosine modulation in the hippocampus by a differential distribution of the density of $A_1$ receptor. Brain Res. 260, 156-159 https://doi.org/10.1016/0006-8993(83)90779-5
  21. Londos, S., Cooper, D. M. F. and Wolff, J. (1987). Subclasses of external adenosine receptors. Proc. Natl. Acad. Sci. USA 77, 2551-2554 https://doi.org/10.1073/pnas.77.5.2551
  22. Mosqueda, G. R., Tseng, C. J., Appalsamy, M., Beck, C. and Robertson, D. (1991). Cardiovascular excitatory effects of adenosine in the nucleus of the solitary tract. Hypertension 18, 494-502 https://doi.org/10.1161/01.HYP.18.4.494
  23. Phillis J. W., Edstrom, J. P. Kostopoulos, G. K. and Kirkpatrick, J. R. (1979). Effects of adenosine and adenine nucleotides on synaptic trasnmission in the cerebral cortex, Can. J. Pharmacol. 57, 1289-1312 https://doi.org/10.1139/y79-194
  24. Sighart, W. (1992). $GABA_A$ receptors : ligand-gated $Cl^-$ ion channels modulated by multiple drug binding sites. Trends Pharmacol. Sci. 13, 446-450 https://doi.org/10.1016/0165-6147(92)90142-S
  25. Stella, L. Berrino, L., Maione, S., de Novellis, F. and Rossi, F. (1993). Cardiovascular effects of adenosine and its analogue in anesthetized rats. Life Sci. 53, 755-763 https://doi.org/10.1016/0024-3205(93)90497-Q
  26. Stone, G. A., Jarvis, M. F., Sills, M. S., Weeks, B., Snowhill, E. W. and Williams, M. (1988). Species differences in high affinity adenosine $A_2$ binding sites in striatal membranes from mammalian brain. Drug Dev. Res. 15, 31-46 https://doi.org/10.1002/ddr.430150104
  27. Van Calker, D., Muller, M. and Hamprecht, B. (1979). Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J. Neurochem. 33, 999-1005 https://doi.org/10.1111/j.1471-4159.1979.tb05236.x