DOI QR코드

DOI QR Code

Carbon Nanotube Oscillator Operated by Thermal Expansion of Encapsulated Gases

삽입 가스의 부피 팽창을 이용한 탄소나노튜브 진동기

  • 권오근 (세명대학교 인터넷정보학부)
  • Published : 2005.12.01

Abstract

We investigated a carbon nanotube (CNT) oscillator controlled by the thermal gas expansion using classical molecular dynamics simulations. When the temperature rapidly increased, the force on the CNT oscillator induced by the thermal gas expansion rapidly increased and pushed out the CNT oscillator. As the CNT oscillator extruded from the outer nanotube, the suction force on the CNT oscillator increased by the excess van der Waals(vdW) energy. When the CNT oscillator reached at the maximum extrusion point, the CNT oscillator was encapsulated into the outer nanotube by the suction force. Therefore, the CNT oscillator could be oscillated by both the gas expansion and the excess vdW interaction. As the temperature increased, the amplitude of the CNT oscillator increased. At the high temperatures, the CNT oscillator escaped from the outer nanotube, because the force on the CNT oscillator due to the thermal gas expansion was higher than the suction force due to the excess vdW energy. By the appropriate temperature controls, such as the maximum temperature, the heating rate, and the cooling rate, the CNT oscillator could be operated.

Keywords

References

  1. K. E. Drexler, 'Nanosystems: Molecular Machinery, Manufacturing, and Computation', Wiley, New York, p, 1, 1992
  2. R. P. Feynman, 'There is plenty of room at the bottom', Eng. Sei., Vol. 23, p, 22, 1960
  3. R P. Feynman, 'There is plenty of room at the bottom', J. Microelectromech. Syst., Vol, 1, No.1, p, 50, 1992
  4. B. C. Crandall and J. Lewis, 'Nanotechnology: Research and Perspectives', MIT, Cambridge, p. 13, 1992
  5. Q. Zheng and Q. Jiang, 'Multiwalled carbon nanotubes as gigahertz oscillators', Phys. Rev. Lett., Vol. 88, No.4, p. 045503, 2002
  6. Q. Zheng, J. S. Liu, and Q. Jiang, 'Excess van der Waals interaction energy of a multiwalled carbon nanotube with an extruded core and the induced core oscillation', Phys. Rev. B, Vol. 65, No. 24, p. 245409, 2002
  7. W. Guo, Y. Guo, H. Gao, Q. Zheng, and W. Zheng, 'Energy dissipation in gigahertz oscillators from multiwalled carbon nanotubes', Phys, Rev. Lett., Vol. 91, No. 12, p. 125501, 2003
  8. Y. Zhao, C. C. Ma, G. Chen, and Q. Jiang, 'Energy dissipation mechanisms in carbon nanotube oscillators', Phys. Rev. Lett., Vol. 91, No. 17, p. 175504, 2003
  9. S. B. Legoas, V. R. Coluci, S. F. Braga, P. Z. Coura, S. O. Dantas, and D. S. Galvao, 'Molecular-dynamics simulations of carbon nanotubes as gigahertz oscillators', Phys, Rev. Lett., Vol. 90, No.5, p, 055504, 2003
  10. S. B. Legoas, V. R. Coluci, S. F. Braga, P. Z. Coura, S. O. Dantas, and D. S. Galvao, 'Gigahertz nanomechanical oscillators based on carbon nanotubes', Nanotechnology, Vol. 15, No.4, p. S184, 2004
  11. J. W. Kang and H. J. Hwang, 'Gigahertz actuator of multiwall carbon nanotube encapsulating metallic ions: molecular dynamics simulations', J. Appl, Phys., Vol. 96, No.7, p. 3900, 2004
  12. J. Cumings and A. Zettl, 'Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes', Science, Vol. 289, No. 5479, p, 602, 2000
  13. R. S. Lee, H. J. Kim, J. E. Fischer, A. Thess, and R. E. Smalley, 'Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br', Nature, Vol. 388, No. 6639, p. 255, 1997
  14. S. Suzuki, F. Maeda, Y. Watanabe, and T. Ogino, 'Electronic structure of single-walled carbon nanotubes encapsulating potassium', Phys. Rev. B, Vol. 67 No. 11, p. 115418, 2003
  15. J. Tersoff, 'Empirical interatomic potential silicon with improved elastic properties', Phys. Rev. B, Vol. 38, No. 14, p. 9902, 1988
  16. J. Tersoff, 'Modeling solid-state chemistry: Interatomic potentials for multicomponent systems', Phys, Rev. B, Vol. 39, No.8, p. 5566, 1989
  17. D. W. Brenner, 'Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films', Phys. Rev. B, Vol. 42, No. 15, p. 9458, 1990
  18. Z. Mao, A. Garg, and S. B. Sinnott, 'Molecular dynamics simulations of the filling and decorating of carbon nanotubules', Nanotechnology, Vol. 10, No.3, p. 273, 1999
  19. Y. Guo, N. Karsawa, and W. A. Goddard III, 'Prediction of fullerene packing in $C_{60}$ and $C_{70}$ crystals', Nature, Vol. 351, No. 6326, p. 464, 1991
  20. G. Chen, Y. Guo, N. Karasawa, and W. A. Goddard III, 'Electron -phonon interactions and superconductivity in $K_{3}C_{60}$', Phys, Rev. B, Vol. 48, No. 18, p. 13959, 1993
  21. G. Gao, T. Cagin, and W. A. Goddard III, 'Position of K atoms in doped single-walled carbon nanotube crystals', Phys, Rev. Lett., Vol. 80, No. 25, p. 5556, 1998
  22. S. Akita and Y. Nakayama, 'Interlayer sliding force of individual multiwall carbon nanotubes', Jpn. J. Appl, Phys., Vol. 42, No. m, p. 4830, 2003
  23. Z. Xia and W. A. Curtin, 'Pullout forces and friction in multiwall carbon nanotubes', Phys. Rev. B, Vol. 69, No. 23, p. 233408, 2004
  24. W. Guo, W. Zhong, Y. Dai, and S. Li, 'Coupled defect-size effects on interlayer friction in multiwalled carbon nanotubes', Phys. Rev. B, Vol. 72, No.7, p. 075409, 2005
  25. P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, 'Thermal transport measurements of individual multiwalled nanotubes', Phys, Rev. Lett., Vol. 87, No. 21, p. 215502, 2001