참고문헌
- Gitter, R. (1990). Designing with extruded aluminum sections. Tagungsband DVM-Tag, Berlin
- Kang, W. J. and Huh, H. (2000). Crash analysis of autobody structures considering the strain-rate hardening effect.lnt. J. Automotive Technology 1, 1, 35-41
- Kim, B. J. and Heo, S. J. (2003). Collapse charac-teristics of aluminum extrusions filled with the structural foam for space frame vehicles. Int. J. Automotive Technology 4, 3, 141-147
- Kim, H. Y., Kim, J. K., Heo, S. J. and Kang, H. (2002). Design of the impact energy absorbing members and evaluation of the crashworthiness of aluminum intensive vehicles. Trans. Korean Society of Automotive Engineers 10, 1, 216-233
- Kim, M. S. (2001). B-INOPL Ver. 3.0: User's guide to the general constrained nonlinear optimization program
- Kim, M. S. and Heo, S. J. (2003). Conservative quadratic RSM combined with incomplete small composite design and conservative least square fitting. KSME Int. J. 17, 5, 705-714
- Kim, M. S. (2004). User's guide to sequential approximate optimization program based on response surface models. R-INOPL Ver. 1.5
- Roger, W. L. and Scott, A. P. (1995). Energy absor-ption in aluminum extrusions for a space frame chassis. SAE Paper No. 951079
- Sobieszczanski-Sobieski, J., Kodiyalam, S. and Yang, R. J. (2000). Optimization of a car body under NVH (noise, vibration, and harshness) constraints and crash. AIAA/ASME/AHS/ASC 41st Structures, Structural Dynamics, and Materials Conf., AIAA Paper No. 2000-1521, Atlanta
- Yang, R. J., Gu, L., Tho, C. H. and SobieszczanskiSobieski, J. (2001). Multidisciplinary design optimization of a full vehicle through high-performance computing. AIAA/ASME/AHS/ASC 42nd Structures, Structural Dynamics, and Materials Conf., AIAA Paper No. 2001-1273, Seattle, Washington