Physical Layer Diversity and its Effects on the Performance of WLANs

물리 계층의 다양성과 무선 랜의 성능에 미치는 영향

  • Published : 2005.12.01

Abstract

Wide spread deployment of infrastructure WLANs has made Wi Fi an integral part of today's Internet access technology. Despite its crucial role in affecting end to end performance, past research has focused on MAC protocol enhancement, analysis and simulation based performance evaluation without sufficient consideration for modeling inaccuracies stemming from inter layer dependencies, including physical layer diversity, that significantly impact performance. We take a fresh look at IEEE 802.11 WLANs, and using experiment, simulation, and analysis demonstrate its surprisingly agile performance traits. Contention based MAC throughput degrades gracefully under congested conditions, enabled by physical layer channel diversity that reduces the effective level of MAC contention. In contrast, fairness and jitter significantly degrade at a critical offered load. This duality obviates the need for link layer flow control for throughput improvement but necessitates traffic control for fairness and QoS. We use experimentation and simulation in a complementary fashion, pointing out performance characteristics where they agree and differ.

오늘날 인프라 무선 랜은 많은 사용자들이 사용하는 중요한 인터넷 접속 기술이다. 지금까지 무선 랜에 관한 연구들은 물리 계층의 채널 다양성으로 인하여 발생하는 모델링 부정확성에 대해 충분히 고려하지 않고, MAC 프로토콜의 향상 및 분석 그리고 시뮬레이션을 통한 성능 평가에만 초점을 맞추어 왔다. 본 논문에서는 계층 상호 간의 의존성의 중요성에 주목하는 새로운 시각으로 IEEE 802.11 무선 랜의 특성을 고찰한다. 실제 무선 랜 시스템 상에서 실험을 수행하여 물리 계층에서 발생하는 불평등성을 관찰하였다. 그리고, 그것이 노드들 간의 혼잡 수준을 떨어뜨리는 역할을 하여 경쟁 기반의 MAC 처리율이 혼잡 상태에서도 서서히 감소하는 것을 보인다. 반면에 노드들 간의 공평성과 노드 처리율의 안정성은 시스템 입력 로드가 특정 수준을 넘으면 크게 저하되는 것을 보인다. 이와 같은 결과를 통하여, 처리율을 높이기 위해 링크 계층에서 제어를 할 필요성은 적은 반면에, 공평한 자원 분배나 서비스의 품질을 보장하기 위해서는 트래픽 제어가 필요하다는 것을 알 수 있다. 시스템의 성능 평가를 위하여 시뮬레이션과 실험을 병행하였다.

Keywords

References

  1. IEEE 802.11 part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications, Aug. 1999
  2. N. Abramson. The Aloha system-another alternative for computer communications. In Proc. Fall Joint Comput. Conf. AFIPS Conf., pp. 281-285, 1970
  3. R. Metcalfe and D. Boggs. Ethernet: distributed packet switching for local computer networks. Communications of the ACM, 19(7):395-404, 1976 https://doi.org/10.1145/360248.360253
  4. G. Bianchi, 'Performance Analysis of the IEEE 802. 11 Distributed Coordination Function,'IEEE Journal on Selected Areas in Communications, Vol .18, No.3, PP.535-547 Mar. 2000 https://doi.org/10.1109/49.840210
  5. F. Cali, M. Conti, and E. Gregori. IEEE 802.11 protocol: Design and performance evaluation of an adaptive backoff mechanism. IEEE Journal on Selected Areas in Communications, 18(9):1774-1786, 2000 https://doi.org/10.1109/49.872963
  6. S. Lu, T. Nandagopal, and V. Bharghavan. A wireless fair service algorithm for packet cellular networks. In Proc. ACM MobiCom '98, pp. 10-20, 1998 https://doi.org/10.1145/288235.288242
  7. N. Vaidya, P. Bahl, and S. Gupta. Distributed fair scheduling in a wireless LAN. In Proc. ACM MobiCom '00, pp. 167-178, 2000 https://doi.org/10.1145/345910.345939
  8. A. Balachandran, G. Voelker, P. Bahl, and P. Rangan. Characterizing user behavior and network performance in a public wireless LAN. In Proc. ACM SIGMETRICS '02, pp. 195-205, 2002 https://doi.org/10.1145/511399.511359
  9. D. Kotz and K. Essien. Analysis of a campus wide wireless network. In Proc. ACM MobiCom '02, pp. 107-118, 2002 https://doi.org/10.1145/570645.570659
  10. D. Tang and M. Baker. Analysis of a local area wireless network. In Proc. ACM MobiCom '00, pp. 1-10, 2000 https://doi.org/10.1145/345910.345912
  11. D. Boggs, J. Mogul, and C. Kent. Measured capacity of an Ethernet: myths and reality. In Proc. ACM SIGCOMM '88, pp. 222-234, 1988 https://doi.org/10.1145/52324.52347
  12. R. Knopp and P. Humblet. Information capacity and power control in single cell multiuser communications. In Proc. ICC '95, 1995 https://doi.org/10.1109/ICC.1995.525188
  13. D. Tse. Optimal power allocation over parallel Gaussian channels. In Proc. International Symposium on Information Theory, 1997 https://doi.org/10.1109/ISIT.1997.612942
  14. H. Kim and J. Hou. Improving protocol capacity with model based frame scheduling in IEEE 802.11 operated WLANs. In Proc. ACM MobiCom '03, pp. 190-204, 2003 https://doi.org/10.1145/938985.939005
  15. C. Yuen and P. Marbach. Service differentiation in random access networks. Technical Report CSRG-472, Computer System Research Group, University of Toronto, Jul. 2003
  16. http://www.enterasys.com/wireless/
  17. AiroPeek NX, WildPackets, Inc. http://www.wildpackets.com/
  18. The network simulator-ns 2. http://www.isi.edu/nsnarn/ns/
  19. I. Cuinas and M. Sanchez. Measuring, modeling, and characterizing of indoor radio channel at 5.8GHz. IEEE Transactions on Vehicular Technology, 50(2): 526-535, 2001 https://doi.org/10.1109/25.923064
  20. S. Kjesbu and T. Brunsvik. Radiowave propagation in industrial environments. In 26th Annual Conference of the IEEE Industrial Electronics Society, volume 4, pp. 2425-2430, 2000 https://doi.org/10.1109/IECON.2000.972377
  21. R. Tingley and K. Pahlavan. Space time measurement of indoor radio propagation. IEEE Trans. Instrum. Meas., 50(1):22-31, 2001 https://doi.org/10.1109/19.903874
  22. S. Sridhar, D. Hogenboom, and B. Willemsen. Microwave experiments on chaotic billiards. J. Stat. Phys., 68(239), 1992 https://doi.org/10.1007/BF01048844
  23. M. Grossglauser and D. Tse. Mobility increases the capacity of ad hoc wireless networks. In Proc. IEEE INFOCOM '01, pp. 1360-1369, 2001